车站分级

题目描述

一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。

现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入输出格式

输入格式:

输入文件为 level.in。

第一行包含 2 个正整数 n, m,用一个空格隔开。

第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si≤ n),表示第 i 趟车次有 si 个停

靠站;接下来有 si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个

空格隔开。输入保证所有的车次都满足要求。

输出格式:

输出文件为 level.out。

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

输入输出样例

输入样例#1

Case 1:

9 2

4 1 3 5 6

3 3 5 6

Case 2:

9 3

4 1 3 5 6

3 3 5 6

3 1 5 9

输出样例#1

Case 1:

2

Case 2:

3

说明

对于 20%的数据,1 ≤ n, m ≤ 10;

对于 50%的数据,1 ≤ n, m ≤ 100;

对于 100%的数据,1 ≤ n, m ≤ 1000。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define maxn 1010
using namespace std;
int n, m,first,ans=0,s,a[maxn],e[maxn][maxn],rudu[maxn],ss[maxn],top;
bool f[maxn],vis[maxn];
void xx()
{
    scanf("%d%d",&n,&m);
    for (int i = 1; i <= m; i++)
    {
        memset(f,0,sizeof(f));
        scanf("%d",&s);
        for (int j=1;j<=s;j++)
        {
            scanf("%d",&a[j]);
            f[a[j]] = 1;
        }
        for (int j=a[1];j<=a[s];j++)
          if (!f[j])
            for (int k=1;k<=s;k++)
              if (!e[j][a[k]])//在起始点内不能停靠的站向可以停靠的站连有向边
                {
                    e[j][a[k]]=1;
                    rudu[a[k]]++;
                }
    }
}
void tp()
{
    first=1;
    while (top!=0||first)
      {
        first=0;
        top=0;
        for (int i=1;i<=n;i++)
            if (!rudu[i]&&!vis[i])
            {
                ss[++top]=i;
                vis[i]=1;
            }
        for (int i=1;i<=top;i++)
            for (int j=1;j<=n;j++)
                if (e[ss[i]][j])
                  {
                    e[ss[i]][j]=0;
                    rudu[j]--;
                  }
        ans++;
      }
    ans--;//因为当top为0的时候累加器还在累加,所以最后要减去1
}

int main()
{
    xx();
    tp();
    printf("%d",ans);
    return 0;
}
时间: 2024-10-04 18:21:02

车站分级的相关文章

P1983 车站分级

P1983 车站分级 题目描述 一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站 x 的都必须停靠.(注意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况.其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦

luogu P1983 车站分级

题目描述 一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站 x 的都必须停靠.(注意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况.其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要

2013车站分级

题目描述 Description 一条单向的铁路线上,依次有编号为1, 2, …, n的n个火车站.每个火车站都有一个级别,最低为1级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站x,则始发站.终点站之间所有级别大于等于火车站x的都必须停靠.(注意:起始站和终点站自然也算作事先已知需要停靠的站点)例如,下表是5趟车次的运行情况.其中,前4趟车次均满足要求,而第5趟车次由于停靠了3号火车站(2级)却未停靠途经的6号火车站(亦为2级)而不满足要求. 现有m趟车次的运

[NOIP2013]车站分级 解题报告

妈蛋这道普及组水(神)题搞了我很久. 一. 首先一个非常显然的事情就是每个火车告诉了站与站之间的等级关系,所以拓扑求最长路. 但是发现暴力建边的话最坏可以达到500*500,所以时间复杂度有O(MN2)≈2.5?108,常数相当小..数据水成狗,所以绝对可以过的. 二. 所以我就想到了bitset,把每辆火车做成一个长N的布尔向量,经过为1,不经过为0,第一个车站的左边和最后一个车站的右边补1,.然后对于每个车站,把所有它所在的位为1的向量都&起来,然后扫一遍向量连边. 这样做的时间复杂度可以用

NOIP2013pj车站分级[拓扑排序]

题目描述 一条单向的铁路线上,依次有编号为 1, 2, …, n 的 n 个火车站.每个火车站都有一个级 别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车 次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站 x 的都必须停靠.(注 意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况.其中,前 4 趟车次均满足要求,而第 5 趟车次由于 停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而

codevs 3294 车站分级

2013NOIP普及组压轴题. 其实只要想到这个车子没停的站肯定比停的站级别低,拓扑排序,在节点入队时dis[e[i].v]=dis[head]+1维护最长路即可. 但要注意此题含有大量重边,若不判重可能会tle掉. #include<iostream>#include<cstdio>#include<cstring>#include<queue>#include<algorithm>#define maxv 1005#define maxe 5

【基础练习】【拓扑排序】codevs3294 车站分级题解

题目来源:NOIP2013 普及第四题 题目描写叙述 Description 一条单向的铁路线上,依次有编号为1, 2, -, n的n个火车站.每一个火车站都有一个级别,最低为1级.现有若干趟车次在这条线路上行驶.每一趟都满足例如以下要求:假设这趟车次停靠了火车站x.则始发站.终点站之间全部级别大于等于火车站x的都必须停靠. (注意:起始站和终点站自然也算作事先已知须要停靠的网站) 比如,下表是5趟车次的执行情况.当中.前4趟车次均满足要求,而第5趟车次因为停靠了3号火车站(2级)却未停靠途经的

【洛谷1983】车站分级

显然,若停靠站点为a1,a2,a3......an, 则a1--an中,没有停靠的站点一定等级比停靠的站点低. 所以每一趟车次从每个低等级的点向每个高级连边. 之后拓扑,每次删去点i(满足1.入度为零,2.没有删掉,3.不是在本轮循环中通过减入度而使i入度为零的) 以及与i相邻的边. 1 #include <iostream> 2 #include<cstdio> 3 using namespace std; 4 int a[1001][1001]; 5 int t[1001][1

NOIP2013 车站分级

描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站 x 的都必须停靠.(注意:起始站和终点站自然也算作事先已知需要停靠的站点)例如,下表是 5 趟车次的运行情况.其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求

[NOIp2013普及组]车站分级

思路: 对于每一趟车,将区间内所有经停的站和所有未经停的站连一条边,表示前者优先级一定高于后者,然后用Kahn跑一遍拓扑排序即可.然而这样会创造大量多余的边,会TLE1个点.考虑一种优化:因为每趟车本身也有一个优先级,因此可以将这趟车也看作一个点,每次先所有将经停的站连一条边到这两车上,表示这些站的优先级一定大于等于车的优先级,再将车连若干边到未经停的点,表示车的优先级一定大于未经停的站的优先级. 1 #include<queue> 2 #include<cstdio> 3 #in