cs231n spring 2017 lecture11 听课笔记

1. Semantic Segmentation

  把每个像素分类到某个语义。

  为了减少运算量,会先降采样再升采样。降采样一般用池化层,升采样有各种“Unpooling”、“Transpose Convolution”(文献中也叫“Upconvolution”之类的其他名字)。

  这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签。

2. Classification + Localizatoin

  一般用同一个网络,一方面得出分类,一方面得出Bounding box的位置和大小。

3. Object Detection

  预先设定好要找哪些objects,一旦图片里发现,就框出来。Classification + Localizatoin一般是针对单个物体,而这里是针对多个物体。

  Sliding window:计算量太大,舍弃。

  Region Proposals:先找可能有物体的图片区域,然后一个个处理,在CPU上大概几秒的时间。这种方法在深度学习之前就出来了。

  R-CNN:先找出region proposal,然后把region proposal调整成神经网络需要的大小,然后给神经网络计算,最后通过SVM分类。

      训练很慢(84h),也非常耗内存。预测也很慢(47秒 VGG16)

  Fast R-CNN:相比R-CNN快很多,训练(8.75h),预测(计算region proposal花2秒,神经网络预测花0.32秒)。

        训练的时候把下图中的Linear + softmax和Linear加起来得到multi-task loss。

  Faster R-CNN:用卷积层去预测region proposal。比Fast R-CNN更快,预测耗时0.2秒。

  YOLO(Redmon et al., CVPR 2016)/SSD(Liu et al, "Single-Shot MultiBox Detecotr", ECCV 2016):这两种方法没有用region proposal,更快,但是相对不那么准。Faster R-CNN更慢,但是更准。

  Object Detection + Captioning (DenseCap, CVPR 2016)

4. Instance Segmentation

  Semantic Segmentation和Object Detection的结合,找出多个物体,并且判断每个像素属于哪个分类。

  Mask R-CNN (He et al., 2017),网络有两个分支,第一个执行Object Detection,第二个执行Semantic Segmentation。这个网络把之前的都融合起来,是集大成者,表现非常非常好。在Object Detection分支加入对人体关节的识别,还能识别人的pose。基于Faster R-CNN,接近real-time。

时间: 2024-08-30 10:41:25

cs231n spring 2017 lecture11 听课笔记的相关文章

cs231n spring 2017 lecture9 听课笔记

参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量.每个filter的通道数等于输入的通道数.卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量.池化层没有需要学习的参数. 图中分成两个通

cs231n spring 2017 lecture7 听课笔记

1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很大的loss function,一个方向梯度变化明显,另一个方向梯度变化很缓慢,SGD在优化过程中会震荡着下降,导致优化很慢.深度学习的网络会有上百万甚至更多的参数需要优化,在这个上百万维的空间里,更容易出现各个维度梯度变化差别很大的问题. 2)陷落在局部最小点或者鞍点(saddle point).

cs231n spring 2017 lecture8 听课笔记

1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1)CUDA,只能在英伟达:2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些.深度学习可以直接调用现成的库,不用自己写CUDA代码. 用cuDNN比不用快几倍. 深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM:2)用SSD而不是HDD:

cs231n spring 2017 lecture12 听课笔记

这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域分类,误差很大,但是转成编码之后就准多了. 可以用PCA可视化最后一层的特征,深度学习领域更高阶的做法是用t-SNE(Van der Maaten and Hinton, "Visualizting Data using t-SNE", JMLR 2008). 可视化非线性函数的激活值也可

cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件可以分为通用和专用两大类.通用硬件又可以分为CPU和GPU.专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC). 2. Algorithms for Efficient Inference 1)Pruning,修剪掉不那么重要的神经元和连接.第一步,用原始的网络训练:第

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比如下图,左边的熊猫被识别成熊猫,但是加上中间的小"噪音"一样的数值,右图的熊猫就识别不出来了.而且这个小"噪音"不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络. 2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化.训

《Spring实战》读书笔记--使用SpringMVC构建REST API

<Spring实战>读书笔记--使用SpringMVC构建REST API 1. REST介绍 REST(Representational State Transfer):表述性状态转移,是基于HTTP.URI.MIME(HTML.JSON等)协议的Web软件架构.它不同于SOAP Web服务(RPC)关注处理,面向行为,其更关注要处理的数据,面向资源. 1.1 <Spring实战>中是这样描述REST的: 为了理解REST是什么,我们将它的首字母缩写才拆分为不同的构成部分: 表述

老男孩培训视频听课笔记一(在51cto上听的)

学习Linux的系统环境准备     1.系统选择centos 5.8/centos 6.4     2.环境:VMware workstation win7 vim 8.0 虚拟机软件选择与实践安装VMware软件    安装VMware workstation 8.0 win7-VMware上新建虚拟机及涉及技术讲解    创建虚拟机:     名字:mode vim-cs5.8     CPU:1-1 内存 128M--5.8 6.4-256M     硬盘:虚拟的硬盘 6G 获得cent

老男孩培训视频听课笔记二(在51cto上听的)

centos 5.8 文本安装过程    引导采用默认,引导不用设置密码    网络配置,根据实际情况配置,网关是网络出口的地址,一般为wlan出口的路由器的地址或者是代理服务器的内网IP    DNS简单解说图:      主机名--时区--root密码    选择自定义系统安装包--最小化(安全方便工作,建议安装以下的组)      ·base-- 基础      ·editors-编辑器      ·development librarays--开发库      ·development