ElasticSearch 集群监控

要监控哪些 ElasticSearch metrics?

Elasticsearch 提供了大量的 Metric,可以帮助您检测到问题的迹象,在遇到节点不可用、out-of-memory、long garbage collection times 的时候采取相应措施。但是指标太多了,有时我们并不需要这么多,这就需要我们进行筛选。

集群健康

一个 Elasticsearch 集群至少包括一个节点和一个索引。或者它 可能有一百个数据节点、三个单独的主节点,以及一小打客户端节点——这些共同操作一千个索引(以及上万个分片)。

不管集群扩展到多大规模,你都会想要一个快速获取集群状态的途径。Cluster Health API 充当的就是这个角色。你可以把它想象成是在一万英尺的高度鸟瞰集群。它可以告诉你安心吧一切都好,或者警告你集群某个地方有问题。

让我们执行一下 cluster-health API 然后看看响应体是什么样子的:

GET _cluster/health

和 Elasticsearch 里其他 API 一样,cluster-health 会返回一个 JSON 响应。这对自动化和告警系统来说,非常便于解析。响应中包含了和你集群有关的一些关键信息:

{
   "cluster_name": "elasticsearch_zach",
   "status": "green",
   "timed_out": false,
   "number_of_nodes": 1,
   "number_of_data_nodes": 1,
   "active_primary_shards": 10,
   "active_shards": 10,
   "relocating_shards": 0,
   "initializing_shards": 0,
   "unassigned_shards": 0
}

响应信息中最重要的一块就是 status 字段。状态可能是下列三个值之一:

  1. number_of_nodes 和 number_of_data_nodes 这个命名完全是自描述的。
  2. active_primary_shards 指出你集群中的主分片数量。这是涵盖了所有索引的汇总值。
  3. active_shards 是涵盖了所有索引的所有分片的汇总值,即包括副本分片。
  4. relocating_shards 显示当前正在从一个节点迁往其他节点的分片的数量。通常来说应该是 0,不过在 Elasticsearch 发现集群不太均衡时,该值会上涨。比如说:添加了一个新节点,或者下线了一个节点。
  5. initializing_shards 是刚刚创建的分片的个数。比如,当你刚创建第一个索引,分片都会短暂的处于 initializing 状态。这通常会是一个临时事件,分片不应该长期停留在 initializing状态。你还可能在节点刚重启的时候看到 initializing 分片:当分片从磁盘上加载后,它们会从initializing 状态开始。
  6. unassigned_shards 是已经在集群状态中存在的分片,但是实际在集群里又找不着。通常未分配分片的来源是未分配的副本。比如,一个有 5 分片和 1 副本的索引,在单节点集群上,就会有 5 个未分配副本分片。如果你的集群是 red 状态,也会长期保有未分配分片(因为缺少主分片)。

集群统计

集群统计信息包含 集群的分片数,文档数,存储空间,缓存信息,内存作用率,插件内容,文件系统内容,JVM 作用状况,系统 CPU,OS 信息,段信息。

查看全部统计信息命令:

curl -XGET ‘http://localhost:9200/_cluster/stats?human&pretty‘

返回 JSON 结果:

{
   "timestamp": 1459427693515,
   "cluster_name": "elasticsearch",
   "status": "green",
   "indices": {
      "count": 2,
      "shards": {
         "total": 10,
         "primaries": 10,
         "replication": 0,
         "index": {
            "shards": {
               "min": 5,
               "max": 5,
               "avg": 5
            },
            "primaries": {
               "min": 5,
               "max": 5,
               "avg": 5
            },
            "replication": {
               "min": 0,
               "max": 0,
               "avg": 0
            }
         }
      },
      "docs": {
         "count": 10,
         "deleted": 0
      },
      "store": {
         "size": "16.2kb",
         "size_in_bytes": 16684,
         "throttle_time": "0s",
         "throttle_time_in_millis": 0
      },
      "fielddata": {
         "memory_size": "0b",
         "memory_size_in_bytes": 0,
         "evictions": 0
      },
      "query_cache": {
         "memory_size": "0b",
         "memory_size_in_bytes": 0,
         "total_count": 0,
         "hit_count": 0,
         "miss_count": 0,
         "cache_size": 0,
         "cache_count": 0,
         "evictions": 0
      },
      "completion": {
         "size": "0b",
         "size_in_bytes": 0
      },
      "segments": {
         "count": 4,
         "memory": "8.6kb",
         "memory_in_bytes": 8898,
         "terms_memory": "6.3kb",
         "terms_memory_in_bytes": 6522,
         "stored_fields_memory": "1.2kb",
         "stored_fields_memory_in_bytes": 1248,
         "term_vectors_memory": "0b",
         "term_vectors_memory_in_bytes": 0,
         "norms_memory": "384b",
         "norms_memory_in_bytes": 384,
         "doc_values_memory": "744b",
         "doc_values_memory_in_bytes": 744,
         "index_writer_memory": "0b",
         "index_writer_memory_in_bytes": 0,
         "version_map_memory": "0b",
         "version_map_memory_in_bytes": 0,
         "fixed_bit_set": "0b",
         "fixed_bit_set_memory_in_bytes": 0,
         "file_sizes": {}
      },
      "percolator": {
         "num_queries": 0
      }
   },
   "nodes": {
      "count": {
         "total": 1,
         "data": 1,
         "coordinating_only": 0,
         "master": 1,
         "ingest": 1
      },
      "versions": [
         "5.6.3"
      ],
      "os": {
         "available_processors": 8,
         "allocated_processors": 8,
         "names": [
            {
               "name": "Mac OS X",
               "count": 1
            }
         ],
         "mem" : {
            "total" : "16gb",
            "total_in_bytes" : 17179869184,
            "free" : "78.1mb",
            "free_in_bytes" : 81960960,
            "used" : "15.9gb",
            "used_in_bytes" : 17097908224,
            "free_percent" : 0,
            "used_percent" : 100
         }
      },
      "process": {
         "cpu": {
            "percent": 9
         },
         "open_file_descriptors": {
            "min": 268,
            "max": 268,
            "avg": 268
         }
      },
      "jvm": {
         "max_uptime": "13.7s",
         "max_uptime_in_millis": 13737,
         "versions": [
            {
               "version": "1.8.0_74",
               "vm_name": "Java HotSpot(TM) 64-Bit Server VM",
               "vm_version": "25.74-b02",
               "vm_vendor": "Oracle Corporation",
               "count": 1
            }
         ],
         "mem": {
            "heap_used": "57.5mb",
            "heap_used_in_bytes": 60312664,
            "heap_max": "989.8mb",
            "heap_max_in_bytes": 1037959168
         },
         "threads": 90
      },
      "fs": {
         "total": "200.6gb",
         "total_in_bytes": 215429193728,
         "free": "32.6gb",
         "free_in_bytes": 35064553472,
         "available": "32.4gb",
         "available_in_bytes": 34802409472
      },
      "plugins": [
        {
          "name": "analysis-icu",
          "version": "5.6.3",
          "description": "The ICU Analysis plugin integrates Lucene ICU module into elasticsearch, adding ICU relates analysis components.",
          "classname": "org.elasticsearch.plugin.analysis.icu.AnalysisICUPlugin",
          "has_native_controller": false
        },
        {
          "name": "ingest-geoip",
          "version": "5.6.3",
          "description": "Ingest processor that uses looksup geo data based on ip adresses using the Maxmind geo database",
          "classname": "org.elasticsearch.ingest.geoip.IngestGeoIpPlugin",
          "has_native_controller": false
        },
        {
          "name": "ingest-user-agent",
          "version": "5.6.3",
          "description": "Ingest processor that extracts information from a user agent",
          "classname": "org.elasticsearch.ingest.useragent.IngestUserAgentPlugin",
          "has_native_controller": false
        }
      ]
   }
}

内存使用和 GC 指标

在运行 Elasticsearch 时,内存是您要密切监控的关键资源之一。 Elasticsearch 和 Lucene 以两种方式利用节点上的所有可用 RAM:JVM heap 和文件系统缓存。 Elasticsearch 运行在Java虚拟机(JVM)中,这意味着JVM垃圾回收的持续时间和频率将成为其他重要的监控领域。

上面返回的 JSON监控的指标有我个人觉得有这些:

nodes.successful
nodes.failed
nodes.total
nodes.mem.used_percent
nodes.process.cpu.percent
nodes.jvm.mem.heap_used

可以看到 JSON 文件是很复杂的,如果从这复杂的 JSON 中获取到对应的指标(key)的值呢,这里看文章 :JsonPath —— JSON 解析神器

本文主要讲述ES 集群的一些监控信息,有些监控指标是个人觉得需要监控的,但是具体情况还是得看需求了。

原文地址:http://www.roncoo.com/article/index

时间: 2024-10-10 15:31:04

ElasticSearch 集群监控的相关文章

使用容器和Elasticsearch集群对Twitter进行监控

介绍 Elasticsearch是ELK(Elasticsearch/Logstash/Kibana)的基石.在这篇文章中,我们将使用Rancher Catalog来部署stack,并将它用于追踪Twitter上的tag和brand. 追踪Twitter上的hashtag对于衡量基于Twitter的营销活动的影响力是非常有用的.你可以从中提取出诸如您的推文被转发的次数,你的营销活动为你带来了多少位新的关注者等有效信息. 安装ELK stack Elasticsearch 若你已经有了一个正在工作

Prometheus监控elasticsearch集群(以elasticsearch-6.4.2版本为例)

部署elasticsearch集群,配置文件可"浓缩"为以下: cluster.name: es_cluster node.name: node1 path.data: /app/data/elasticsearch path.logs: /app/logs/elasticsearch network.host: 192.168.x.x http.port: 9200 transport.tcp.port: 9201 discovery.zen.ping.unicast.hosts:

(转)Elasticsearch集群的脑裂问题

转自 http://blog.csdn.net/cnweike/article/details/39083089 所谓脑裂问题(类似于精神分裂),就是同一个集群中的不同节点,对于集群的状态有了不一样的理解. 今天,Elasticsearch集群出现了查询极端缓慢的情况,通过以下命令查看集群状态: curl -XGET 'es-1:9200/_cluster/health' 发现,集群的总体状态是red,本来9个节点的集群,在结果中只显示了4个:但是,将请求发向不同的节点之后,我却发现即使是总体状

我的ElasticSearch集群部署总结--大数据搜索引擎你不得不知

摘要:世上有三类书籍:1.介绍知识,2.阐述理论,3.工具书:世间也存在两类知识:1.技术,2.思想.以下是我在部署ElasticSearch集群时的经验总结,它们大体属于第一类知识“techknowledge(技术)”.但其中也穿插一些我个人的理解.敬请指正. 关键词:ElasticSearch, 搜索引擎, 集群, 大数据, Solr, 大数据 三类书籍 和 两类知识: 有一些书是对某一新知识领域的介绍,将此知识领域从头到尾.从内而外剖开了分析,吸收这些知识主要在于“记忆”,(也有“领会”)

elasticsearch集群介绍及优化【转】

elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展)或者购买更多的服务器(横向扩展),Elasticsearch能从更强大的硬件中获得更好的性能,但是纵向扩展也有一定的局限性.真正的扩展应该是横向的,它通过增加节点来传播负载和增加可靠性.对于大多数数据库而言,横向扩展意味着你的程序将做非常大的改动来利用这些新添加的设备.对比来说,Elasticsearch天生是分布式的:它知道如何管理节点来提供高扩展和高可用.这意味着你的程序不需要关心这些.对于大

CentOS下 elasticsearch集群安装

1.进入root目录并下载elasticsearch cd /root wget https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.7.3.tar.gz 2.解压下载好的压缩包 tar -zxvf elasticsearch-1.7.3.tar.gz 3.修改目录名字为node1(这里需要安装三个节点) mv elasticsearch-1.7.3 elasticsearch-node3 4.修改/ro

Elasticsearch集群许可证管理

Elasticsearch集群许可证管理 1.许可证有效期管理 Elasticsearch集群许可证有效期查看 1.通过kibana查看: Your Basic license is activeYour license will expire on May 30, 2019 7:59 AM CST. 2.通过ES的http接口查看: curl -XGET -u admin:password 'http://<host>:<port>/_license'集群没有帐号密码的,忽略-u

Elasticsearch 学习之携程机票ElasticSearch集群运维驯服记(强烈推荐)

转自: https://mp.weixin.qq.com/s/wmSTyIGCVhItVNPHcH7nsA 一.整体架构 为什么采用ES作为搜索引擎呢?在做任何事情的时候,不要一上来就急着了解怎么做这件事情,而是去想想这件事情为什么值得去做. 这个是比较通用的数据的流程,一般会通过Kafka分离产生数据的应用程序和后面的平台,通过ETL落到不同的地方,按照优先级和冷热程度采取不同的存储方式.一般来说,冷数据存放到HDFS,如果温数据.或者热数据会采用Database以及Cache,目前分布式Ca

elasticsearch集群优化

es集群优化方案:1.节点职责划分明确:master节点(控制整个集群),数据节点(存储数据),客户端节点(响应用户,转发请求):2.禁用交换分区:3.关闭data节点服务器的http功能:4.内存分配 配置详情1. 节点职责划分主节点:主要职责是和集群操作相关的内容,如创建或删除索引,跟踪哪些节点是群集的一部分,并决定哪些分片分配给相关的节点. 配置文件定义:node.master: true node.data: false数据节点:主要是存储索引数据的节点,主要对文档进行增删改查操作,聚合