题意:求树上路径可修改的第k大值是多少。
题解:CDQ整体二分+树刨。
每一个位置上的数都会有一段持续区间
根据CDQ拆的思维,可以将这个数拆成出现的时间点和消失的时间点。
然后通过整体二分第k大思路 + 树炮询问路径上出现点的个数就好了。
说一下整体二分的思路。
先假设第k大的值是mid, 然后按照时间顺序,出现一个数<=mid标记这个数的位置为1, 消失一个数<=mid,标记这个数的位置为0。
然后对于询问来说,询问路径上的值, 与 k进行比较, 如果 值 >= k则说明这个询问的第k大落在区间[ l, mid]之间, 否则落在 [mid+1,r]之间,并且第k大是在[mid+1,r] 的 k -= 路劲值。
然后将所有 修改且值 <= mid 和 询问第k大落在左边的 询问放到 数组的左边, 其他放到数组的右边, 然后递归下去处理左边 / 右边的这个区间。
这样每个操作最多只会访问lg次。
每次操作的复杂度是lg*lg。
所以最后的复杂度是n*lg^3.
代码:
#include<bits/stdc++.h> using namespace std; #define Fop freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout); #define LL long long #define ULL unsigned LL #define fi first #define se second #define pb push_back #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] #define max3(a,b,c) max(a,max(b,c)) #define min3(a,b,c) min(a,min(b,c)) typedef pair<int,int> pll; const int inf = 0x3f3f3f3f; const int _inf = 0xc0c0c0c0; const LL INF = 0x3f3f3f3f3f3f3f3f; const LL _INF = 0xc0c0c0c0c0c0c0c0; const LL mod = (int)1e9+7; const int N = 8e5 + 100; const int M = 2 * N; int head[N], to[M], nt[M]; int sz[N], son[N], deep[N], top[N], fa[N], dfn[N], dto[N], tr[N<<2]; int tot, dtot; int n; int a[N]; struct Node{ int k, a, b, id; }A[M], B[M], C[M]; /** k == -1 Add -> pos[a] = b k == -2 Del -> pos[a] = 0 else k Query with ans[id] **/ void add(int u, int v){ to[tot] = v; nt[tot] = head[u]; head[u] = tot++; to[tot] = u; nt[tot] = head[v]; head[v] = tot++; } void dfs1(int o, int u){ sz[u] = 1; for(int i = head[u]; ~i; i = nt[i]){ int v = to[i]; if(v == o) continue; dfs1(u, v); if(sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } } void dfs2(int o, int u, int t){ deep[u] = deep[o] + 1; top[u] = t; fa[u] = o; dfn[u] = ++dtot; dto[dtot] = u; if(son[u]) dfs2(u, son[u], t); for(int i = head[u]; ~i; i = nt[i]){ int v = to[i]; if(v == o || v == son[u]) continue; dfs2(u, v, v); } } void PushUp(int rt){ tr[rt] = tr[rt<<1] + tr[rt<<1|1]; } int Query(int L, int R, int l, int r, int rt){ if(L <= l && r <= R) return tr[rt]; int m = l+r >> 1; int ret = 0; if(L <= m) ret += Query(L, R, lson); if(m < R) ret += Query(L, R, rson); return ret; } void Updata(int L, int C, int l, int r, int rt){ if(l == r){ tr[rt] = C; return ; } int m = l+r >> 1; if(L <= m) Updata(L, C, lson); else Updata(L, C, rson); PushUp(rt); return ; } int Query_Path(int x, int y){ int fx = top[x], fy = top[y]; int ret = 0; while(fx != fy){ if(deep[fx] > deep[fy]){ ret += Query(dfn[fx],dfn[x],1,n,1); x = fa[fx]; fx = top[x]; } else { ret += Query(dfn[fy],dfn[y],1,n,1); y = fa[fy]; fy = top[y]; } } if(deep[x] < deep[y]) ret += Query(dfn[x], dfn[y], 1, n, 1); else ret += Query(dfn[y], dfn[x], 1, n,1); return ret; } int lca(int x, int y){ int fx = top[x], fy = top[y]; while(fx != fy){ if(deep[fx] > deep[fy]) x = fa[fx]; fx = top[x]; else y = fa[fy]; fy = top[y]; } if(deep[x] < deep[y]) return x; return y; } void init(){ memset(head, -1, sizeof(head)); memset(son, 0, sizeof son); tot = dtot = 0; } int atot = 0; void AddNode(int op, int a, int b, int id){ A[++atot] = {op, a, b, id}; } int ans[N]; void cdq(int ansl, int ansr, int l, int r){ if(l > r) return ; if(ansl == ansr){ for(int i = l; i <= r; ++i) if(A[i].id) ans[A[i].id] = ansl; return ; } int mid = ansl+ansr >> 1; int tb = 0, tc = 0; for(int i = l; i <= r; ++i){ if(A[i].k == -1){ if(A[i].b <= mid){ B[++tb] = A[i]; Updata(dfn[A[i].a], 1, 1, n, 1); } else { C[++tc] = A[i]; } } else if(A[i].k == -2){ if(A[i].b <= mid){ B[++tb] = A[i]; Updata(dfn[A[i].a], 0, 1, n, 1); } else C[++tc] = A[i]; } else { int kk = Query_Path(A[i].a, A[i].b); if(kk >= A[i].k) B[++tb] = A[i]; else A[i].k -= kk; C[++tc] = A[i]; } } for(int i = 1; i <= tb; ++i) A[i+l-1] = B[i]; for(int i = 1; i <= tc; ++i) A[tb+l+i-1] = C[i]; cdq(ansl, mid, l, tb+l-1); cdq(mid+1, ansr, tb+l, r); } int main(){ init(); int q; scanf("%d%d", &n, &q); for(int i = 1; i <= n; ++i) { scanf("%d", &a[i]); AddNode(-1, i, a[i], 0); } int x, y; for(int i = 1; i < n; ++i) { scanf("%d%d", &x, &y); add(x, y); } int m = 0; dfs1(1,1); dfs2(1,1,1); int k; for(int i = 1; i <= q; ++i){ scanf("%d%d%d", &k, &x, &y); if(k) { int z = lca(x,y); z = deep[x] + deep[y] - deep[z] * 2 + 1; if(z < k){ ans[++m] = -1; } else AddNode(z-k+1, x, y, ++m); } else { AddNode(-2, x, a[x], 0); AddNode(-1, x, y, 0); a[x] = y; } } for(int i = 1; i <= n; ++i) AddNode(-2, i, a[i], 0) cdq(1, 1e8+10, 1, atot); for(int i = 1; i <= m; ++i) if(~ans[i]) printf("%d\n", ans[i]); else puts("invalid request!"); return 0; }
原文地址:https://www.cnblogs.com/MingSD/p/10805687.html
时间: 2024-10-11 05:44:45