AI - MLCC - 02 - 深入了解机器学习 (Descending into ML)

线性回归

人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。

数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。

Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系。

首先建议您将数据绘制成图表,了解下数据的分布情况:

图 1. 每分钟的鸣叫声与温度(摄氏度)的关系。

毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升。鸣叫声与温度之间的关系是线性关系吗?

是的,您可以绘制一条直线来近似地表示这种关系,如下所示:

图 2. 线性关系。

事实上,虽然该直线并未精确无误地经过每个点,但针对我们拥有的数据,清楚地显示了鸣叫声与温度之间的关系。

只需运用一点代数知识,您就可以将这种关系写下来,如下所示:

按照机器学习的惯例,您需要写一个存在细微差别的模型方程式:

训练与损失

简单来说,训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。
在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型;这一过程称为经验风险最小化。

损失是对糟糕预测的惩罚。
也就是说,损失是一个数值,表示对于单个样本而言模型预测的准确程度。
如果模型的预测完全准确,则损失为零,否则损失会较大。
训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差。
例如,图 3 左侧显示的是损失较大的模型,右侧显示的是损失较小的模型(红色箭头表示损失。蓝线表示预测)。

图 3. 左侧模型的损失较大;右侧模型的损失较小。

请注意,左侧曲线图中的红色箭头比右侧曲线图中的对应红色箭头长得多。
显然,相较于左侧曲线图中的蓝线,右侧曲线图中的蓝线代表的是预测效果更好的模型。

您可能想知道自己能否创建一个数学函数(损失函数),以有意义的方式汇总各个损失。

平方损失:一种常见的损失函数

涉及的关键字词

偏差 (bias)
距离原点的截距或偏移。偏差(也称为偏差项)在机器学习模型中用 b 或 w0 表示。
例如,在下面的公式中,偏差为 b:


请勿与预测偏差混淆。

权重 (weight)
线性模型中特征的系数,或深度网络中的边。
训练线性模型的目标是确定每个特征的理想权重。
如果权重为 0,则相应的特征对模型来说没有任何贡献。

线性回归 (linear regression)
一种回归模型,通过将输入特征进行线性组合输出连续值。

推断 (inference)
在机器学习中,推断通常指以下过程:通过将训练过的模型应用于无标签样本来做出预测。
在统计学中,推断是指在某些观测数据条件下拟合分布参数的过程。(请参阅维基百科中有关统计学推断的文章。)

经验风险最小化 (ERM, empirical risk minimization)
用于选择可以将基于训练集的损失降至最低的函数。与结构风险最小化相对。

损失 (Loss)
一种衡量指标,用于衡量模型的预测偏离其标签的程度。或者更悲观地说是衡量模型有多差。
要确定此值,模型必须定义损失函数。
例如,线性回归模型通常将均方误差用作损失函数,而逻辑回归模型则使用对数损失函数。

均方误差 (MSE, Mean Squared Error)
每个样本的平均平方损失。MSE 的计算方法是平方损失除以样本数。
TensorFlow Playground 显示的“训练损失”值和“测试损失”值都是 MSE。

平方损失函数 (squared loss)
在线性回归中使用的损失函数(也称为 L2 损失函数)。
该函数可计算模型为有标签样本预测的值和标签的实际值之差的平方。
由于取平方值,因此该损失函数会放大不佳预测的影响。
也就是说,与 L1 损失函数相比,平方损失函数对离群值的反应更强烈。

训练 (training)
确定构成模型的理想参数的过程。

检查理解情况

问题

对于以下曲线图中显示的两个数据集,哪个数据集的均方误差 (MSE) 较高

解答

原文地址:https://www.cnblogs.com/anliven/p/10253210.html

时间: 2024-11-08 14:45:39

AI - MLCC - 02 - 深入了解机器学习 (Descending into ML)的相关文章

谷歌机器学习速成课程---2深入了解机器学习(Descending into ML)

1.线性回归 人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁.数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录.Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系. 首先建议您将数据绘制成图表,了解下数据的分布情况: 图 1. 每分钟的鸣叫声与温度(摄氏度)的关系. 毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升.鸣叫声与温度之间的关系是线性关系吗?是的,您可以绘制一条直线来近似地表

「02」《机器学习经·天工开物篇》

上期导读:机器学习,到底在学些什么? 起源 故事要从上古神器差分机说起. 从古至今,所有的算法修炼和真气推演记录,全部要靠门派里的外门弟子手写,工序繁杂不说,还耗时良久,导致各大门派的修炼进度一直提不上来. 直到两百年前,神器大师查尔斯·巴贝奇开始了差分机的设计和制造,在后续大师的不断改良之后,终于实现了从真气计算到密文印刷的过程全部自动化,这样还可以避免人为误差,在那个时候,这是一个非常开创性的想法. ? 差分机使用有限差分法来机器计算多项式函数(一种真气运转模式)的值.有限差分方法是个简单但

AI - MLCC - 01 - 问题构建 (Framing):机器学习主要术语

什么是(监督式)机器学习?简单来说,它的定义:机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测. 问题构建 (Framing):机器学习主要术语 标签 标签是要预测的事物,即简单线性回归中的 y 变量. 标签可以是小麦未来的价格.图片中显示的动物品种.音频剪辑的含义或任何事物. 特征 特征是输入变量,即简单线性回归中的 x 变量. 简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征,按如下方式指定: 在垃圾邮件检测器示例中,特征可能包括: 电

AI - MLCC - 04 - 使用TF的基本步骤02 - Pandas 简介

原文链接:https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb 1- Pandas HomePage : http://pandas.pydata.org/ Docs : http://pandas.pydata.org/pandas-docs/stable/index.html 针对Python语言的开源数据分析处理工具,可以提供高性能.易用的数据结构: 主要数据结构 DataFrame: 数据框架是用于数

解锁云原生 AI 技能 - 开发你的机器学习工作流

按照上篇文章<解锁云原生 AI 技能 | 在 Kubernetes 上构建机器学习系统>搭建了一套 Kubeflow Pipelines 之后,我们一起小试牛刀,用一个真实的案例,学习如何开发一套基于 Kubeflow Pipelines 的机器学习工作流. 准备工作 机器学习工作流是一个任务驱动的流程,同时也是数据驱动的流程,这里涉及到数据的导入和准备.模型训练 Checkpoint 的导出评估.到最终模型的导出.这就需要分布式存储作为传输的媒介,此处使用 NAS 作为分布式存储. 创建分布

AI - MLCC - 03 - 降低损失

1- 迭代方法 机器学习算法用于训练模型的迭代试错过程(迭代方法): 迭代策略在机器学习中的应用非常普遍,这主要是因为它们可以很好地扩展到大型数据集. "模型"部分将一个或多个特征作为输入,然后返回一个预测作为输出. "计算损失"部分是模型将要使用的损失函数,机器学习系统在"计算参数更新"部分检查损失函数的值. 现在,假设这个神秘的绿色框会产生新值,然后机器学习系统将根据所有标签重新评估所有特征,为损失函数生成一个新值,而该值又产生新的参数值.

Day1 机器学习(Machine Learning, ML)基础

一.机器学习的简介 定义 Tom Mitchell给出的机器学习定义: 对于某类任务T和性能度量P,如果计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序从经验E学习. 百度百科给出的机器学习定义:机器学习是多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能. 分类 监督学习(supervised learning):数据集是有标签的,

2019年最值得关注的AI领域技术突破及未来展望

选自venturebeat 翻译:魔王.一鸣 前言 AI 领域最杰出的头脑如何总结 2019 年技术进展,又如何预测 2020 年发展趋势呢?本文介绍了 Soumith Chintala.Celeste Kidd.Jeff Dean 等人的观点. 人工智能不是将要改变世界,而是正在改变世界.在新年以及新的十年开启之际,VentureBeat 采访了人工智能领域最杰出的头脑,来回顾人工智能在 2019 年的进展,展望机器学习在 2020 年的前景.受访者包括 PyTorch 之父 Soumith

机器学习 一 监督学习和无监督学习的区别

前话: 最近一直想学机器学习的东西,无奈自己的书太多但无法专心看一本,纯理论的东西看了感觉不记下来就忘记类,所以我想理论学习和实践一起. 所以最近想把机器学习实战这本书看完,并做好记录.加油.!~ 一:什么是监督学习? 监督学习(supervised learning):通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力.