[Swift]LeetCode877. 石子游戏 | Stone Game

Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation:
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true. 

Note:

  1. 2 <= piles.length <= 500
  2. piles.length is even.
  3. 1 <= piles[i] <= 500
  4. sum(piles) is odd.


亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

示例:

输入:[5,3,4,5]
输出:true
解释:
亚历克斯先开始,只能拿前 5 颗或后 5 颗石子 。
假设他取了前 5 颗,这一行就变成了 [3,4,5] 。
如果李拿走前 3 颗,那么剩下的是 [4,5],亚历克斯拿走后 5 颗赢得 10 分。
如果李拿走后 5 颗,那么剩下的是 [3,4],亚历克斯拿走后 4 颗赢得 9 分。
这表明,取前 5 颗石子对亚历克斯来说是一个胜利的举动,所以我们返回 true 。 

提示:

  1. 2 <= piles.length <= 500
  2. piles.length 是偶数。
  3. 1 <= piles[i] <= 500
  4. sum(piles) 是奇数。


8ms

class Solution {
    func stoneGame(_ piles: [Int]) -> Bool {
        return true
    }
}


12ms

 1 class Solution {
 2     func stoneGame(_ piles: [Int]) -> Bool {
 3         var stonesA = 0
 4         var stonesB = 0
 5
 6         var alexMove = true
 7
 8         var left = 0
 9         var right = piles.count - 1
10
11         while left <= right {
12             var stones = 0
13
14             if piles[left] > piles[right] {
15                 stones = piles[left]
16                 left += 1
17             } else {
18                 stones = piles[right]
19                 right -= 1
20             }
21
22             if alexMove {
23                 stonesA += stones
24             } else {
25                 stonesB += stones
26             }
27
28             alexMove = !alexMove
29         }
30
31         return true
32     }
33 }


40ms

 1 class Solution {
 2     func stoneGame(_ piles: [Int]) -> Bool {
 3     var mem : [Int?] = [Int?](repeating: nil, count: piles.count + 1)
 4     _ = stoneGame(piles, mem: &mem)
 5     if let leScore = mem[piles.count - 1]{
 6         return mem[piles.count]! > leScore
 7     }else{
 8         return true
 9     }
10 }
11
12 func stoneGame(_ piles : [Int], mem : inout [Int?])->Int{
13     guard piles.count > 1 else{
14         if let score = mem[1]{
15             return score
16         }else{
17             mem[1] = piles[0]
18             return mem[1]!
19         }
20     }
21
22     guard piles.count > 2 else{
23         if let score = mem[2]{
24             return score
25         }else{
26             mem[2] = max(piles[0], piles[1])
27             return mem[2]!
28         }
29     }
30
31     // if the thing has more than [1, 2, 3]
32     if let score = mem[piles.count]{
33         return score
34     }else{
35         mem[piles.count] = max(piles[0] + stoneGame(Array(piles[1...]), mem: &mem), piles[piles.count - 1] + stoneGame(Array(piles[0..<(piles.count - 1)]), mem: &mem))
36         return mem[piles.count]!
37     }
38   }
39 }

原文地址:https://www.cnblogs.com/strengthen/p/10600937.html

时间: 2024-10-27 17:02:49

[Swift]LeetCode877. 石子游戏 | Stone Game的相关文章

取(2堆)石子游戏(威佐夫博弈+hdu2177)

T - 取(2堆)石子游戏 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2177 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,

poj 1067||hdu 1527 取石子游戏(博弈论,Wythoff Game)

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37893   Accepted: 12684 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

HDU 2176 取(m堆)石子游戏 博弈

取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3598    Accepted Submission(s): 2151 Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,10先取者胜,先取者第1次取

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. N≤10 Ai≤1000 裸SG函数啊 然而我连SG函数都不会求了,WA了一会儿之后照别人代码改发现vis公用了... #include <iostream> #include <cstdio> #include <cstring> #includ

BZOJ 1115: [POI2009]石子游戏Kam

1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 924  Solved: 574[Submit][Status][Discuss] Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. Input 第一行u表示数据组数.对于每组数据,第一行

poj1067-取石子游戏 (威佐夫博弈) 【博弈】

http://poj.org/problem?id=1067 取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36753   Accepted: 12446 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如

hdu 2516 取石子游戏

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2816    Accepted Submission(s): 1626 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&qu

BZOJ 1413 取石子游戏(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁输. 思路:参考这里. int f1[N][N],f2[N][N],n,a[N]; void deal() { RD(n); int i,j,k; FOR1(i,n) RD(a[i]),f1[i][i]=f2[i][i]=a[i]; int p,q,x; for(k=2;k<=n;k++) for(