\(\frac 12\)

\(r=\frac{l}{e\cos \theta+1}\), where $l$ is the semi-latus rectum, and \(e\) is the eccentricity. so \(\frac{1}{r}=\frac el\cos\theta+\frac 1l\). Since the most common orbits of heavenly bodies are circles and ellipses, we should be able to construct a linear differential equation that involves the derivatives of \(\frac 1r\) with respect to \(\theta\).Let‘s define \(u=\frac 1r\), and denote differentiation w.r.t. \(\theta\) by primes and that w.r.t. by a dot on top.  Particularly, we should derive this equation from Newton‘s law of universal gravity, which is given by \(a=-\frac GMu^2e_r\). Since \(v=r‘\omega e_r+\omega re_{\theta}=-\frac u‘{u^2}\omega e_r+\frac {\omega}ue_{\theta}\), we have that \(a=v‘\omega=\omega(-\frac u‘{u^2}\omega e_r+\frac {\omega}ue_{\theta})‘=-GMu^2e_r\). To eliminate \(\omega\), notice that the angular momentum per unit mass \(h=\omega r^2\) is a constant w.r.t. \(\theta\). So since \(\omega=hu^2\), we get \(hu^2(-\frac {u‘}{u^2}hu^2e_r+hue_{\theta})‘=-GMu^2e_r\), \(h(-u‘he_r+hue_{\theta})‘=-GMe_r\), \(h(-u‘‘he_r-u‘he_{\theta}+hu‘e_{\theta}-hue_r)=-GMe_r\),\(u‘‘+u=\frac {GM}h^2\) where we used the fact that $(e_{\theta})‘=-e_r$ and $(e_r)‘=e_{\theta}.$ The solution of this equation is given by $u=C\cos(\theta-\theta_0)+\frac{GM}{h^2}$, where $C$ and $theta_0$ are real numbers. Given any initial condition, we can always modify our coordinate system so that when the object is about to move ahead, its initial angle $\theta$ vanishes. Therefore let $t=0$, and we only consider the case where $\theta=0$. Hence $\frac 1{r_0}=C\cos\theta_0+\frac{GM}{h^2}$, $C=(\frac 1{r_0}-\frac{GM}{h^2})\frac {1}{\cos\theta_0}$. Differentiate our solution, we get $u‘=-C\sin(\theta-\theta_0)$, so $u‘(0)=-C\sin\theta_0$. We have already replace $C$ by $r_0$ as one of our parameters for the initial state. Next we shall compute the dependency of $\theta_0$ upon $v^r(0)$,which is denoted by $v^r_0$. $r‘=-\frac {u‘}{u^2}$, $v^r=r‘\omega=-\frac{u‘}{u^2}\omega=-u‘h$, $u‘=\frac{-v^r}h$, $u‘(0)=\frac{-v^r_0}{h}$, $\frac{-v^r_0}{h}=-C\sin{\theta_0}$,$\frac{v^r_0}{h}=C\sin{\theta_0}$,$\tan(\theta_0)=\frac{v^r_0}{h^2}(\frac 1{r_0}-\frac{GM}{h^2})^{-1}$, $\theta_0=\arctan(\frac{v^r_0}{h^2}(\frac 1{r_0}-\frac{GM}{h^2})^{-1})$. One thing to keep in mind is that by convention we say that $G$ and $M$ are known and that $h$ is unknown. This makes perfect sense since the particle we are dealing with here is arbitrary and we already know about the fixed body. Therefore, since $h$ is conserved we can think of $h$ as part of the initial state parameters. Since $v^{\theta}(0)=v^{\theta}_0=\frac{h}r_0$, we see that $h$ depends upon $v^{\theta}_0$. Hence with the above formulae we‘ve derived, we can determine the trajectory of a particle given its initial radial, tangential speed and radial distance.

Let e=0.5,l=1,h=1, then

$\frac {du}{dt}=hu‘u^2=-0.5(1+0.5\cos\theta)^2\sin\theta$

$\frac {d^2u}{dt^2}=\frac {d}{d\theta}(\frac{du}{dt})hu^2=-\frac{0.5(1+0.5\cos\theta)^3(2\cos\theta+0.5(3\cos(2\theta)-1))}{2}$

$\frac{d^3u}{dt^3}=\frac{0.5(1+0.5\cos\theta)^4(2+3*0.5^2+20*0.5\cos\theta+15*0.5^2\cos2\theta)\sin\theta}{2}$ 

$\frac{d^4u}{dt^4}=\frac{0.5(1+0.5\cos\theta)^5((8-58*0.5^2)\cos\theta+0.5(-20(-5+3*0.5^2)\cos(2\theta)+3(-4+9*0.5^2+70*0.5\cos(3\theta)+35*0.5^2\cos(4\theta))))}{8}$
时间: 2024-11-10 07:01:34

\(\frac 12\)的相关文章

数学1——概率与数学期望

1.什么是数学期望? 数学期望亦称期望.期望值等.在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和. 这是什么意思呢?假如我们来玩一个游戏,一共52张牌,其中有4个A.我们1元钱赌一把,如果你抽中了A,那么我给你10元钱,否则你的1元钱就输给我了.在这个游戏中,抽中的概率是$\frac{1}{13} ( \frac{4}{52} ) $,结果是赢10元钱:抽不中概率是$\frac{12}{13}$,结果是亏1元钱.那么你赢的概率,也就是期望值是$-

第四章 自测

1. \[\begin{aligned}  \mbox{原式}   =\int \frac{dx}{2\sin x \cos x +2\sin x} = \frac12 \int \frac{\sin x}{\sin^2 x (\cos x+1)} dx  = -\frac12 \int \frac{1}{(1+\cos x)^2 (1-\cos x)} d(\cos x)\\= -\frac12 \int ( \frac{1/2}{(1+\cos x)^2}  + \frac{1/4}{1+\

BZOJ4001 [TJOI2015]概率论

Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1.000000000 HINT 1<=N<=10^9 题解 令$f_i$表示n个点无标号二叉树个数,那么枚举根的左子树的点数,可以得到 $$f_n = [n=0] + \sum_{i = 0}^{n - 1} f_if_{n-i-1}$$ (一眼看过去就是卡特兰数,但是现在暂时用不到) 再令$g_i

课本第四章-不定积分习题整理

三角函数相关类型 1. 利用三角变化以及三角恒等式,比如 $\sin^2 x + \cos^2 x=1$ 以及二倍角公式,和差化积,积化和差. 比如:  4-1 的 1-(5), 令 $1=\sin^2 x+ \cos^2 x$ 即可; 4-1 的 1-(6), 二倍角公式 4-1 的 1-(7), 二倍角公式 $\cos 2x =\cos^2 x  -\sin^2 x$ 4-2 的 1-(12), 积化和差公式 4-3 的 1-(5), $\tan^2 x=\sec^2 x -1$ 2. $\

加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)

Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Bayes Theorem $$P(A_i|B)=\frac{P(B|A_i)\cdot P(A_i)}{\sum_{j}P(B|A_j)\cdot P(A_j)}$$ where $$P(B)=\sum_{j}P(B|A_j)\cdot P(A_j)$$ GRA

【bzoj3771】Triple FFT+容斥原理

题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视为一种方案.拿走三把斧头时,(a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)视为一种方案. 输入 第一行是整数N,表示有N把斧头. 接下来n行升序输入N个数字Ai,表示每把斧头的价值. 输出 若干行,按升序对于所有可能的总损失输出一行x y,x为损失值,

加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size

化减为加:十进制的「补码」

补码把减法变加法的原理其实就是同余. 设 \(n+1\) 位二进制数 \( N = \overline{x_n \cdots x_2x_1x_0} \) 即 \( N = x_0+2x_1+2^{2}x_2+\cdots+2^{n}x_n \;\;\;\; (x_i \in \left\{ 0,1 \right \}) \) 则补码 \( N' = (1-x_0)+2(1-x_1)+2^{2}(1-x_2)+\cdots+2^{n}(1-x_n) + 1 \) \( = 1+2+2^2+\cdo

复习题 二

简略解答,有些过程省略了,只是给出思路以及结果 一 1. 5 (奇函数的导数是偶函数,练习册前面的结论) 2. 1 3.  $(f'(x) \arctan f(x) +\frac{f(x) f'(x)}{1+f^2(x)}) dx$ 4. $\frac{\pi}{16}$   (首先利用奇偶性,得到原式$=\frac14 \int_0^{\pi/2}   (\sin 2x)^2 d(2x)$, 注意到 $ \int_0^{\pi/2}   (\sin 2x)^2 d(2x)= \int_0^{\