[HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738

给一张无向图,每一条边都有权值。找一条割边,使得删掉这条边双连通分量数量增加,求权值最小那条。

注意有重边,ACEveryDay里群巨给的意见是tarjan的时候记录当前点是从哪条边来的。

注意假如桥的权值是0的时候也得有一个人去炸……

  1 /*
  2 ━━━━━┒ギリギリ♂ eye!
  3 ┓┏┓┏┓┃キリキリ♂ mind!
  4 ┛┗┛┗┛┃\○/
  5 ┓┏┓┏┓┃ /
  6 ┛┗┛┗┛┃ノ)
  7 ┓┏┓┏┓┃
  8 ┛┗┛┗┛┃
  9 ┓┏┓┏┓┃
 10 ┛┗┛┗┛┃
 11 ┓┏┓┏┓┃
 12 ┛┗┛┗┛┃
 13 ┓┏┓┏┓┃
 14 ┃┃┃┃┃┃
 15 ┻┻┻┻┻┻
 16 */
 17 #include <algorithm>
 18 #include <iostream>
 19 #include <iomanip>
 20 #include <cstring>
 21 #include <climits>
 22 #include <complex>
 23 #include <fstream>
 24 #include <cassert>
 25 #include <cstdio>
 26 #include <bitset>
 27 #include <vector>
 28 #include <deque>
 29 #include <queue>
 30 #include <stack>
 31 #include <ctime>
 32 #include <set>
 33 #include <map>
 34 #include <cmath>
 35 using namespace std;
 36 #define fr first
 37 #define sc second
 38 #define cl clear
 39 #define BUG puts("here!!!")
 40 #define W(a) while(a--)
 41 #define pb(a) push_back(a)
 42 #define Rint(a) scanf("%d", &a)
 43 #define Rll(a) scanf("%lld", &a)
 44 #define Rs(a) scanf("%s", a)
 45 #define Cin(a) cin >> a
 46 #define FRead() freopen("in", "r", stdin)
 47 #define FWrite() freopen("out", "w", stdout)
 48 #define Rep(i, len) for(int i = 0; i < (len); i++)
 49 #define For(i, a, len) for(int i = (a); i < (len); i++)
 50 #define Cls(a) memset((a), 0, sizeof(a))
 51 #define Clr(a, x) memset((a), (x), sizeof(a))
 52 #define Full(a) memset((a), 0x7f7f, sizeof(a))
 53 #define lp p << 1
 54 #define rp p << 1 | 1
 55 #define pi 3.14159265359
 56 #define RT return
 57 #define lowbit(x) x & (-x)
 58 #define onenum(x) __builtin_popcount(x)
 59 typedef long long LL;
 60 typedef long double LD;
 61 typedef unsigned long long ULL;
 62 typedef pair<int, int> pii;
 63 typedef pair<string, int> psi;
 64 typedef map<string, int> msi;
 65 typedef vector<int> vi;
 66 typedef vector<LL> vl;
 67 typedef vector<vl> vvl;
 68 typedef vector<bool> vb;
 69
 70 typedef struct Edge {
 71     int u, v, w;
 72     int idx, next;
 73     bool cut;
 74     Edge() {}
 75     Edge(int uu, int vv, int ww, int ii) : u(uu), v(vv), w(ww), idx(ii) {}
 76 }Edge;
 77 const int maxn = 1010;
 78 const int maxm = maxn*maxn;
 79 int n, m;
 80 int bridge;
 81 Edge edge[maxm];
 82 int head[maxn];
 83 int dfn[maxn], low[maxn];
 84 int ecnt;
 85 int ret;
 86
 87 void adde(int u, int v, int w, int i) {
 88     edge[ecnt] = Edge(u, v, w, i);
 89     edge[ecnt].next = head[u];
 90     edge[ecnt].cut = 0;
 91     head[u] = ecnt++;
 92 }
 93
 94 void dfs(int u, int d, int p) {
 95     low[u] = dfn[u] = d;
 96     for(int i = head[u]; ~i; i=edge[i].next) {
 97         int v = edge[i].v;
 98         int idx = edge[i].idx;
 99         if(p == idx) continue;
100         if(!dfn[v]) {
101             dfs(v, d+1, idx);
102             low[u] = min(low[u], low[v]);
103             if(low[v] > dfn[u]) {
104                 bridge++;
105                 edge[i].cut = edge[i^1].cut = 1;
106                 ret = min(ret, edge[i].w);
107             }
108         }
109         else low[u] = min(low[u], dfn[v]);
110     }
111 }
112
113 int main() {
114     // FRead();
115     int u, v, w;
116     while(~Rint(n) && ~Rint(m) && n + m) {
117         Clr(head, -1); Cls(dfn); Cls(low);
118         ecnt = 0; bridge = 0; ret = 0x7f7f7f;
119         For(i, 1, m+1) {
120             Rint(u); Rint(v); Rint(w);
121             adde(u, v, w, i); adde(v, u, w, i);
122         }
123         int cnt = 0;
124         For(i, 1, n+1) {
125             if(!dfn[i]) {
126                 cnt++;
127                 dfs(i, 0, 0);
128             }
129         }
130         if(ret == 0) ret = 1;
131         if(ret == 0x7f7f7f) ret = -1;
132         if(cnt > 1) ret = 0;
133         printf("%d\n", ret);
134     }
135     RT 0;
136 }

[HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)

时间: 2024-12-28 16:47:29

[HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)的相关文章

HDU 4738 Caocao&#39;s Bridges(双联通分量+并查集)

大意:有n座岛和m条桥,每条桥上有w个兵守着,现在要派不少于守桥的士兵数的人去炸桥,只能炸一条桥,使得这n座岛不连通,求最少要派多少人去. 思路:我们就是要缩点后直接求桥上人的最少数量.(PS:1.注意图如果不联通直接输出0.2.如果图中的桥上人为0,个那么要让一个人去.3.重边的问题.这里可以忽略) #include<map> #include<queue> #include<cmath> #include<cstdio> #include<stac

BZOJ2730 矿场搭建 解题报告 点双联通分量

题意概述: 一张有向图,在其中设置一些关键点(即题目中的逃生出口),使得删除任意一个点之后其余点都可以到达至少一个关键点. 问至少需要设置多少中关键点,有多少种设置方法. 解析: 首先,这道题要求删掉一个点,不难想到这道题与割点有关.其次,删掉一个点其他点仍然可以到达关键点就可以想到是点双联通分量. 但是,问题关键是,真的需要在每一个点双联通分量中都设置一个关键点吗? 答案是否定的,因为如果一个双联通分量连接了两个或两个以上的割点,一个割点被删掉那么还可以通过另外的割点到达某个关键点,如上图,红

双联通分量与二分图

我这是耽搁了多长时间才把它整完哈哈哈哈哈: 双联通分量 在无向图中,如果无论删去哪条边都不能使得 u 和 v 不联通,则称 u 和 v 边双连通: 在无向图中,如果无论删去哪个点(非 u 和 v)都不能使得 u 和v 不联通,则称 u 和 v 点双连通. 割点:删去该点,图分裂为多个连通块. 割边:也叫"桥",删去该边,图分裂为多个连通块. 点双连通分量 类似地,定义$ d f n_u 和 low_u$. 如果 v 是 u 的子结点,并且 $low_v ≥ d f n_u $则点 u

hihocoder #1190 : 连通性&#183;四 点双联通分量

http://hihocoder.com/problemset/problem/1190?sid=1051696 先抄袭一下 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho从约翰家回到学校时,网络所的老师又找到了小Hi和小Ho. 老师告诉小Hi和小Ho:之前的分组出了点问题,当服务器(上次是连接)发生宕机的时候,在同一组的服务器有可能连接不上,所以他们希望重新进行一次分组.这一次老师希望对连接进行分组,并把一个组内的所有连接关联的服务器也视为这个组内

UVA - 10765 Doves and bombs (双联通分量)

链接 :  http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34798 给N个点的无向图并且联通,问删除每次一个点之后还剩多少联通分量. 找割顶 如果删除的是割顶 联通分量就会增加,否则还是1(因为原图是联通图),删除割顶之后 联通块的数目 就要看该割顶在几个双联通分量里出现过. #pragma comment(linker, "/STACK:10240000,10240000") #include <a

【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 11661   Accepted: 3824 Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, an

HDU5409---CRB and Graph 2015多校 双联通分量缩点

题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分量则该边一定是桥, 那么我们可以先处理出所有的桥,然后把所有双联通分量缩点,缩点之后就变成了一棵树. 而树上的每一条边都是一个桥, 考虑每条边的输出,删除某一边后肯定会出现两个联通分量, 需要记录两个联通分量中最大的点max1 max2, 如果max1!=n 则答案就是max1 max1+1否则ma

POJ 1515 双联通分量

点击打开链接 题意:给一个联通的无向图,然后问你将其中的边变为有向的,加边使其变成有向的联通图 思路:若无向图有双联通分量,那么这个分量里的元素可以变成有向图的强联通,这应该很好看出来,然后需要加的边是什么呢,就是这个图上的桥呗,是桥的话变成有向的就要加一条边,然后剩下的无向图的双联通分量可以用dfs搜一下,边搜边输出就可以了,将桥记录下来遇到桥的时候特殊处理一下,然后双联通分量里的边每一条只能走一次,将走得边和反向边标记一下就行了  PS:vector写这样反向边的真是麻烦 #include

HDU 4612 双联通分量+树的直径

点击打开链接 题意:给一个无向联通图,里面可能有重边,问添加一条边后,使得图中的桥最小,将桥的数量输出 思路:刚刚读完题,就有了思路去写,无非就是将联通图双联通分量后缩点,然后求一条最长的路,首尾相连,肯定将更多的桥包含使得这些桥不再是桥,很好想的题,但是错了20+什么鬼,md重边这么难处理,醉了~~~,之前的做法是将重边全部找出来,希望数据弱点水过去算了,TLE好样的,那么我们在处理桥的时候,也就是找桥的时候,如果是桥,我们将这条边标记一下,然后找所有边时加上就行了,在一个就是找树的直径,两次