Ultra-QuickSort——[归并排序、分治求逆序对]

Description

  In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
  Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

  The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

  For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0解题思路:  本题揭示了排序的本质——消除逆序对。逆序对,是指对于满足 当i<j时,a[i]>a[j]的序偶(a[i],a[j])。可以证明,交换序列中任意两个相邻元素,逆序对增加或减少一。那么对于一个给定的序列,按一次交换一对相邻元素的方法,最少需要要交换的次数等于此序列中逆序对的数目。那么问题就变成了如何求给定序列的逆序对。可以采用分治的方法:  整个序列逆序对数=左半序列逆序对数+右半序列逆序对数+前一个元素在左半序列,后一个元素在右半序列的逆序对数。  再细考虑可以发现,这个过程可以在归并排序的同时完成,时间复杂度为O(NlogN).

注意:可以简单计算一下,n个元素的排列逆序对数最多有 n(n-1)/2个,需要用到long long。

代码如下:
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <ctime>
 5 using namespace std;
 6 #define print_time_ printf("time : %f\n",double(clock())/CLOCKS_PER_SEC)
 7 #define maxn 500000
 8 int A[maxn+5];
 9
10 typedef long long LL;
11 LL DC(int a,int N){
12     int mid=a+N/2-1;
13     int b=a+N-1;
14     if(N==1)
15         return 0;
16
17     LL x1=DC(a, N/2);
18     LL x2=DC(mid+1,b-mid);
19     LL x3=0;
20     int *B=new int[N];
21     int i=a,j=mid+1,p=0;
22     for(;i<=mid&&j<=b&&p<N;p++){
23         if(A[i]<=A[j]){
24             B[p]=A[i++];
25         }
26         else {
27             B[p]=A[j++];
28             x3+=mid-i+1;
29         }
30     }
31     while(i<=mid){B[p++]=A[i++];}
32     while(j<=b){B[p++]=A[j++];}
33     memcpy(A+a, B, N*sizeof(int));
34     delete [] B;
35     return x1+x2+x3;
36 }
37 int main() {
38     int n;
39     while(scanf("%d",&n)==1&&n){
40         for(int i=0;i<n;i++)
41             scanf("%d",&A[i]);
42         printf("%lld\n",DC(0, n));
43     }
44     //print_time_;
45     return 0;
46 }



时间: 2024-10-31 06:59:00

Ultra-QuickSort——[归并排序、分治求逆序对]的相关文章

POJ 2299 Ultra-QuickSort (树状数组or 归并排序分治求逆序对数)

题目大意就是说帮你给一些(n个)乱序的数,让你求冒泡排序需要交换数的次数(n<=500000) 显然不能直接模拟冒泡排序,其实交换的次数就是序列的逆序对数. 由于数据范围是 0 ≤ a[i] ≤ 999,999,999所以先要离散化,然后用合适的数据结果求出逆序 可以用线段树一步一步添加a[i],每添加前查询前面添加比它的大的有多少个就可以了. 也可用树状数组,由于树状数组求的是(1...x)的数量和所以每次添加前查询i-sum(a[i])即可 树状数组: //5620K 688MS #incl

P1136 归并排序,求逆序对个数

这道题从看到它开始到做出来,已经过了快两周[因为第一次思路完全跑偏写的是暴力模拟想水过]: 题意是这样的:  jzabc除了对多米诺骨牌感兴趣外,对赛车也很感兴趣.上个周末他观看了一场赛车比赛.他总是能想出许多稀奇的问题.某一时刻,他看到有n辆车(总是匀速行驶)在同一直线上,并且处在一个无限长度的直道上,而且n辆车有严格的先后之分.他通过特殊的器材测出了每一辆车的速度.那么问题出现了,如果有两辆车A车和B车,A车在B车的后面,并且A车的速度比B车的快,那么经过一段时间后,A车一定会超过B车.我们

树状数组求逆序对

给定n个数,要求这些数构成的逆序对的个数.除了用归并排序来求逆序对个数,还可以使用树状数组来求解.树状数组求解的思路:开一个能大小为这些数的最大值的树状数组,并全部置0.从头到尾读入这些数,每读入一个数就更新树状数组,查看它前面比它小的已出现过的有多少个数sum,然后用当前位置减去该sum,就可以得到当前数导致的逆序对数了.把所有的加起来就是总的逆序对数.题目中的数都是独一无二的,这些数最大值不超过999999999,但n最大只是500000.如果采用上面的思想,必然会导致空间的巨大浪费,而且由

分治法 求 逆序对数 的个数 时间复杂度为O(n*logn)

思路: 分治法 归并排序的过程中,有一步是从左右两个数组中,每次都取出小的那个元素放到tmp[]数组中 右边的数组其实就是原数组中位于右侧的元素.当不取左侧的元素而取右侧的元素时,说明左侧剩下的元素均比右侧的第一个元素大,即均能构成一个逆序对.假设现在左侧剩余n个元素,则逆序对数+n. 另外,如果当所有右侧的元素都取完,但是左侧仍然有元素剩余时,左侧剩余的元素已经在之前的运算中加到了逆序对中,不需要再添加一次 下面给出 归并排序 和 求逆序对数 两份代码: code1: 归并排序 #includ

求逆序对 36

? ? 引言 ? ? 一开始接触到这题还觉得挺有意思的,但后来发现其深层次的含义就是一个归并排序,只是在归并排序的过程中做了一点小动作而已,这也再次证明了很多东西都是万变不离其宗的 ? ? 本文首先讲了一下归并排序的过程,用了自己比较喜欢的简洁的方式,然后对比归并排序与求逆序对之间的关系,发现需要稍微修改一下合并两个已排序数组的方法,要从两个数组的最后的数开始 ? ? 最后考虑到如果求逆序对的字符是固定数目的话,比如4个,详情可以参考后面的,那么时间复杂度不用归并排序的nlogn了,如果我们可以

poj-2299 Ultra—QuickSort(归并排序求逆序数)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38688   Accepted: 13950 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

归并排序求逆序对模板(未完待续)

归并排序求逆序对题目(持续更新) \(1.\) \(Ultra\) \(Quicksort\) (需要该篇博文的阅读密码) 归并排序求逆序对 细节:传参三个,左.中.右三端点,每次运算注意中端点总取左右端点和的一半:返回条件为左右端点相等,此时无需排序. \(View\) \(Code\) void msort(int l,int mid,int r) { if(l==r) return; msort(l,(l+mid)>>1,mid); msort(mid+1,(r+mid+1)>&g

归并排序求逆序对

归并排序求逆序对 by mps [1]什么是逆序对? 对于一个数列需要按从小到大排序,如果有ai,aj且满足ai>aj和i<j则ai,aj为一组逆序对 [2]如何求逆序对? 我们发现,我们可以暴力枚举i,j,然后逐一判断并累加答案即可,时间复杂度O(N2)        但是对于数据量大一点的题目,只有不断地TLE了→_→ [3]归并排序求逆序对 逆序对的定义(见[1])是一组本应该有序的序列中的逆序对,那么我们就想到了排序,但由于是要22匹配,我们又想到了归并排序 归并排序大致内容如下: 将

ZJNU 1247 归并排序求逆序对

逆序对——高级 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 118   Accepted: 28 Description 对于一个包含N个非负整数的数组A[1..n],如果有i < j,且A[ i ]>A[ j ],则称(A[ i] ,A[ j] )为数组A中的一个逆序对.  例如,数组(3,1,4,5,2)的逆序对有(3,1),(3,2),(4,2),(5,2),共4个. 求n个数中的逆序对个数. Input 第一