VC和gcc在保证功能static对线程安全的差异变量

VC和gcc不同,不能保证静态变量的线程安全性。这就给我们的程序带来了非常大的安全隐患和诸多不便。这一点应该引起我们的重视!尤其是在构造函数耗时比較长的时候。非常可能给程序带来意想不到的结果。本文从測试代码開始,逐步分析原理,最后给出解决方式。

多线程状态下。VC不能保证在使用函数的静态变量的时候,它的构造函数已经被运行完成,以下是一段測试代码:

 class TestStatic
{
public:
    TestStatic()
    {
       Sleep(1000*10);
       m_num = 999;
    }

public:
    int m_num;
};

DWORD WINAPI TestThread( LPVOID lpParam )
{
    static TestStatic test;
    printf("Thread[%d] Num[%d]\n", lpParam, test.m_num);
    return 0;
} 

int _tmain(int argc, _TCHAR* argv[])
{
    DWORD dwThreadId;
    for (int i=1; i<=3; i++)
    {
       CreateThread(NULL,0,TestThread,(LPVOID)i,0,&dwThreadId);
    }

    for (int i =0; i<10; i++)
    {
       Sleep(1000*10000);
    }

    return 0;
}

測试代码有益在构造函数中制造了一个较长时间的延时。程序执行结果:

Thread[2] Num[0]

Thread[3] Num[0]

Thread[1] Num[999]

结果显示,线程2和线程3在静态变量的构造函数没有运行完成的时候就已经使用了该变量实例。于是得到了错误的结果。

从以下列出的TestThread函数的反汇编代码不难看出问题所在。静态变量实例不存在的时候。程序会生成一个实例然后调用构造函数。当实例存在的时候直接就跳过生成实例和调用构造函数两个步骤。

结合上面的输出结果,线程1最先调用函数TestThread,因此生成了实例test而且開始调用TestStatic类构造函数。构造函数卡在了sleep上。再此之后,线程2和线程3先后来调用TestThread函数。可是此时尽管构造函数没有运行完成,可是静态变量的实例已经存在,所以跳过了生成实例和调构造函数,直接来到了printf函数的调用处,输出了没有初始化的变量值(这里是0)。当sleep完成后,构造函数运行完成,变量值被设置为999,仅仅有线程1得到了正确的结果999。

static TestStatic test;

00D48A7D  mov         eax,dword ptr [$S1 (0D9EA94h)]

00D48A82  and         eax,1

00D48A85  jne        TestThread+6Ch (0D48AACh)

00D48A87  mov         eax,dword ptr [$S1 (0D9EA94h)]

00D48A8C  or          eax,1

00D48A8F  mov         dword ptr [$S1 (0D9EA94h)],eax

00D48A94  mov         dword ptr [ebp-4],0

00D48A9B  mov         ecx,offset test (0D9EA98h)

00D48AA0  call        TestStatic::TestStatic (0D2DF6Dh)

00D48AA5  mov         dword ptr [ebp-4],0FFFFFFFFh

printf("Thread[%d] Num[%d]\n", lpParam, test.m_num);

00D48AAC mov         esi,esp

00D48AAE  mov         eax,dword ptr [test (0D9EA98h)]

00D48AB3  push        eax

00D48AB4  mov         ecx,dword ptr [ebp+8]

00D48AB7  push        ecx

00D48AB8  push        offset string "thread[%d] num[%d]" (0D8A0A0h)

00D48ABD  call        dword ptr [MSVCR90D_NULL_THUNK_DATA (0DA0B3Ch)]

……

类似的代码。我们在linux上用gcc编译程序,看看效果怎样:

class TestStatic
{
public:
         TestStatic()
         {
                   sleep(10);
                   m_num = 999;
         }
public:
         int m_num;
};

static void* TestThread( void* lpParam )
{
         static TestStatic test;
         printf("Thread[%d] Num[%d]\n", lpParam, test.m_num);
         return 0;
} 

int main (int argc, char *argv[])
{
         pthread_attr_t ThreadAttr;
         pthread_attr_init(&ThreadAttr);
         pthread_attr_setdetachstate(&ThreadAttr, PTHREAD_CREATE_DETACHED);

         pthread_t tid;
         for (int i=1; i<=3; i++)
         {
            pthread_create(&tid, &ThreadAttr, TestThread, (void*)i);
         }                                                 

         sleep(60*60*24);                     

         return(0);
}

终于的结果显示。gcc编译出的程序和VC出现不同结果,每一个线程都得到了正确的数值。可见gcc是真正保证了函数内部静态变量的线程安全性的,程序执行结果例如以下:

Thread[3] Num[999]

Thread[2] Num[999]

Thread[1] Num[999]

相同,我们从TestThread函数的反汇编代码代码来分析问题。

不难看出,gcc和VC最大的差别就在于call  0x400a50
<[email protected]>
,这一行代码。gcc在创建静态变量实例之前先要获取锁,而且构造函数运行完成才觉得实例创建成功。显然,这个锁是gcc自己主动加入上的代码。因此,构造函数没有运行完成,全部线程都不能获取到test变量。也就不会像VC程序一样输出错误的结果了。

0x40195a    push   rbp

0x40195b    mov    rbp,rsp

0x40195e    push   r12

0x401960    push   rbx

0x401961    sub    rsp,0x10

0x401965    mov    QWORD PTR [rbp-0x18],rdi

0x401969    mov    eax,0x6031f0

0x40196e    movzx  eax,BYTE PTR [rax]

0x401971    test   al,al

0x401973    jne   
0x4019a2 <TestThread(void*)+72>

0x401975    mov    edi,0x6031f0

0x40197a   call   0x400a50
<[email protected]>

0x40197f    test   eax,eax

0x401981    setne  al

0x401984    test   al,al

0x401986    je     0x4019a2 <TestThread(void*)+72>

0x401988    mov    r12d,0x0

0x40198e    mov    edi,0x6031f8

0x401993   call   0x401b06 <TestStatic::TestStatic()>

0x401998    mov    edi,0x6031f0

0x40199d   call   0x400ae0 <[email protected]>

0x4019a2    mov    edx,DWORD PTR [rip+0x201850]        # 0x6031f8 <_ZZL10TestThreadPvE4test>

0x4019a8    mov    rax,QWORD PTR [rbp-0x18]

0x4019ac    mov    rsi,rax

0x4019af    mov    edi,0x401d9c

0x4019b4    mov    eax,0x0

0x4019b9    call   0x400a40 <[email protected]>

0x4019be        mov    eax,0x0

0x4019c3         add    rsp,0x10

0x4019c7         pop    rbx

0x4019c8         pop    r12

0x4019ca         pop    rbp

0x4019cb         ret

0x4019cc         mov    rbx,rax

0x4019cf          test   r12b,r12b

0x4019d2        jne    0x4019de <TestThread(void*)+132>

0x4019d4        mov    edi,0x6031f0

0x4019d9        call   0x400b40 <[email protected]>

0x4019de        mov    rax,rbx

0x4019e1        mov    rdi,rax

0x4019e4        call   0x400b70 <[email protected]>

大家都喜欢使用Singleton模式。用的时候图方便,也喜欢直接在函数里面直接用个静态变量。

有的时候也必须使用静态变量。比方须要在程序退出的时候运行析构函数的情况。

可是多线程状态下。VC和gcc不同。不能保证静态变量的线程安全性。VC的这个缺陷导致我们在使用Singleton模式的时候,不能像gcc一样直接採用静态函数成员变量的方式。这就给我们的程序带来了非常大的安全隐患和诸多不便。这一点应该引起我们的重视!尤其是在构造函数耗时比較长的时候。非常可能给程序带来意想不到的结果。

我们必须使用变通的方法,自己来控制类的初始化过程。

曾经我在解决问题的时候就是直接定义一个全局变量的锁,可是定义全局变量代码不够美观。毕竟不是一个好的风格。

同一时候,加锁解锁也相当影响效率。

以下我给出一个能够作为固定模式使用的范例代码供大家參考。基本思路就是利用函数内部的一个基本类型的变量来控制复杂实例的生成:

class ClassStatic
{
public:
    ClassStatic()
    {
       Sleep(1000*10);
       m_num = 999;
    }
public:
    int m_num;
};

DWORD WINAPI TestThread( LPVOID lpParam )
{
    static volatile long single = 1;

    while(single != 0)
    {
       if (1 == _InterlockedCompareExchange(&single, 2, 1))
       {
           break;
       }
       else
       {
            for ( unsigned int i = 0; i < 1024; i++ )
           {
                _mm_pause();
           }

           while (single != 0)
           {
              Sleep(1);
           }
       }
    }

    static ClassStatic test;

    single && (single = 0);

    printf("Thread[%d] Num[%d]\n", lpParam, test.m_num);

    return 0; 

}

这次的执行结果就正确了:

Thread[3] Num[999]

Thread[2] Num[999]

Thread[1] Num[999]

版权声明:本文博客原创文章,博客,未经同意,不得转载。

时间: 2024-10-03 05:49:33

VC和gcc在保证功能static对线程安全的差异变量的相关文章

VC和gcc在保证函数static变量线程安全性上的区别

VC和gcc不同,不能保证静态变量的线程安全性.这就给我们的程序带来了很大的安全隐患和诸多不便.这一点应该引起我们的重视!尤其是在构造函数耗时比较长的时候,很可能给程序带来意想不到的结果.本文从测试代码开始,逐步分析原理,最后给出解决方案. 多线程状态下,VC不能保证在使用函数的静态变量的时候,它的构造函数已经被执行完毕,下面是一段测试代码: class TestStatic { public: TestStatic() { Sleep(1000*10); m_num = 999; } publ

VC/MFC ListCtrl 控件功能使用汇总(转)

以下未经说明,listctrl默认view 风格为report 相关类及处理函数 MFC:CListCtrl类 SDK:以 "ListView_"开头的一些宏.如 ListView_InsertColumn -------------------------------------------------------------------------------- 1. CListCtrl 风格      LVS_ICON: 为每个item显示大图标      LVS_SMALLIC

static 和 final 关键字 对实例变量赋初始值的影响

static 和 final 关键字 对实例变量赋初始值的影响 最近一直在看<深入理解Java虚拟机>,在看完了对象内存分配.Class文件格式之后,想深扒一下实例变量是如何被赋上初始值的这个问题的细节. 在2.3.1小节中讲对象创建的时候,讲到内存分配有两种方式:一种是指针碰撞:另一种是空闲列表. 而选择哪种分配方式是由JAVA堆是否规整决定,而JAVA堆是否规整则由虚拟机所采用的垃圾收集器是否带压缩整理功能决定. 我们不管内存分配采用何种方式,当内存分配完成后,虚拟机将分配到的内存空间都初

[C] zintrin.h : 智能引入intrinsic函数。支持VC、GCC,兼容Windows、Linux、Mac OS X

博客来源:http://blog.csdn.net/zyl910/article/details/8100744 现在很多编译器支持intrinsic函数,这给编写SSE等SIMD代码带来了方便.但是各个编译器略有差异,于是我编写了zintrin.h,智能引入intrinsic函数. 一.各种编译器的区别 1.1 Visual C++(Windows) 最早支持intrinsic函数的VC编译器是VC 6.0.它在装上Visual Studio 6.0 Service Pack 5.Visual

VC与GCC代码编译差别(一)

Manacher算法,实现最长回文字符串检测的算法.算法实现在Gcc编译环境下运行出现错误,但是在VC环境下运行正常. #include <stdio.h> #include <stdlib.h> #include <string.h> void PrintString(char* s); char* longestPalindrome(char* s) { int index_s=0,index_f=1; int id=1,mx=0; int str_len = st

VC++编译器预编译头功能(stdafx.h)原理与实践

1 现象 在使用VC++应用向导生成的源码框架时,无论是MFC应用程序,还是Win32窗体程序,都会默认启用"预编译头"功能,自动生成stdafx.h和stdafx.cpp这两个文件.以后向项目中增加源文件时,也自动对该源文件启用"预编译头"功能.要求必须在.cpp文件开头加入 #include "stdafx.h" ,否则编译器就会报错:fatal error C1010:在查找预编译头时遇到意外的文件结尾.是否忘记了向源中添加"#i

[C/C++] 各种C/C++编译器对UTF-8源码文件的兼容性测试(VC、GCC、BCB)

在不同平台上开发C/C++程序时,为了避免源码文件乱码,得采用UTF-8编码来存储源码文件.但是很多编译器对UTF-8源码文件兼容性不佳,于是我做了一些测试,分析了最佳保存方案. 一.测试程序 为了测试编译器对UTF-8源码文件兼容性,我编写了这样的一个测试程序—— //#if _MSC_VER >= 1600 // VC2010 //#pragma execution_character_set("utf-8") //#endif #include <stdio.h>

gcc编译过程、C语言编译过程分析、环境变量设置、linux文件夹结构和用途介绍、常用文件和目录的操作命令、文件类型

参考链接:http://www.cnblogs.com/ggjucheng/archive/2011/12/14/2287738.html http://blog.csdn.net/novrose/article/details/7670477 http://blog.sina.com.cn/s/blog_7d5d42b40100ulqn.html 一.大小写后缀的区别 .s     汇编语言源程序;汇编.S     汇编语言源程序;预处理,汇编 小写的s文件,在后期阶段不在进行预处理操作,所以

ASP.net如何保证EF操作类线程内唯一

说到线程内唯一,肯定会想到单例模式,但是如果多用户访问网站就会出现问题.ASP.net中有两种方法可以保证EF操作类线程内唯一(目前只会这两种,以后有好的方法再添加): 1.httpcontext(实现原理也是通过数据槽callcontext) 将EF操作类通过键值对方法保存在HttpContext.Current.Items["key"],封装成方法直接调用 2.callcontext public static DbContext CreateDbContext() { DbCon