菲波纳契数列

#include "stdio.h"
void main()
{
    int a[20],i;
    a[0]=1;
    a[1]=1;
    for(i=2;i<20;i++)
    a[i]=a[i-1]+a[i-2];
    for(i=0;i<20;i++)
    printf("%d ",a[i]);
}
时间: 2024-10-16 03:13:48

菲波纳契数列的相关文章

菲波那契数列编程实现

http://blog.csdn.net/pipisorry/article/details/37660419 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为"兔子数列". fibonacci 数列定义: n = 1,2 时,fib(n) = 1 n > 2 时,fib(n) = fib(n-2) + fib(n-1) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,

菲波拉契数列(传统兔子问题)

题目: 古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 斐波那契数: 亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就

菲波纳切数列

写一个函数,输入n,求斐波那契数列(Fibonacci)数列的第n项.斐波那契数列定义如下: 当n=0时,f(n)=0;当n=1时,f(n)=1;当n>1时,f(n)=f(n-1)+f(n-2). 效率很低的解乏,挑剔的面试官不会喜欢. public int fibo(int n){ if(n<=0) return 0; if(n==1) return 1; return fibo(n-1)+fibo(n-2); } 我们以求解f(10)为例来分析递归的求解过程.想求得f(10),需要先求的f

递推-练习1--noi1760 菲波那契数列(2)

递推-练习1--noi1760 菲波那契数列(2) 一.心得 二.题目 1760:菲波那契数列(2) 总时间限制:  1000ms 内存限制:  65536kB 描述 菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和.给出一个正整数a,要求菲波那契数列中第a个数对1000取模的结果是多少. 输入 第1行是测试数据的组数n,后面跟着n行输入.每组测试数据占1行,包括一个正整数a(1 <= a <= 1000000). 输出 n行,每行输出对应一个输入.

斐波纳契数列

查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ... 样例 给定 1,返回 0 给定 2,返回 1 给定 10,返回 34 虽然这道题是一道入门级的题目,可是在第一遍做的时候并没有多想,直接使用的递归,然后数据通过95%,显示的到47的时候就溢出了.经过学习前辈的经验,该题的收获如下: 方法1:使用递归解,

HDU 4639 Hehe(字符串处理,斐波纳契数列,找规律)

题目 //每次for循环的时候总是会忘记最后一段,真是白痴.... //连续的he的个数 种数 //0 1 //1 1 //2 2 //3 3 //4 5 //5 8 //…… …… //斐波纳契数列 //不连续的就用相乘(组合数)好了 #include<iostream> #include<algorithm> #include<string> #include <stdio.h> #include <string.h> #include &l

菲波那契数列的快速幂矩阵求法

时间:2014.05.15 地点:基地二楼 ----------------------------------------------------------------------- 一.背景 著名的斐波那契数列为一个这样的序列:0 1 1 2 3 5 8 13 21 34......简单的递推公式如下: F(0)=0,F(1)=1,当n>=1时,F(n)=F(n-1)+F(n-2) 显然,我们用直接的按公式递归的算法去计算该数列的第n项效率并不高,因为这样每次递归调用我们只是将规规模缩小了

递归--练习6--noi1755菲波那契数列

递归--练习6--noi1755菲波那契数列 一.心得 二.题目 1755:菲波那契数列 总时间限制:  1000ms 内存限制:  65536kB 描述 菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和.给出一个正整数a,要求菲波那契数列中第a个数是多少. 输入 第1行是测试数据的组数n,后面跟着n行输入.每组测试数据占1行,包括一个正整数a(1 <= a <= 20) 输出 输出有n行,每行输出对应一个输入.输出应是一个正整数,为菲波那契数列中第

2017-3-5 函数 函数返回多个值 递归和菲波那契数列练习

(一)函数的定义:非常抽象,独立完成某项功能的独立个体. 作用:1提高代码的重用性 2提高功能开发的效率性 3提高程序代码的可维护性 函数分为   固定功能函数  高度抽象函数 函数的4要素:输入  输出  函数名  函数体 函数的多种形态: 1.   4要素齐全的 public static 返回值类型 函数名(需要的参数,可以多个,多种数据类型) { 函数体 return 返回返回值类型的数据 } 2.  有参数无返回值的 public ststic void 函数名(参数) { 函数体 }