The u32 classifier

The u32 classifier

The U32 filter is the most advanced filter available in the current implementation. It entirely based on hashing tables, which make it robust when there are many filter rules.

In its simplest form the U32 filter is a list of records, each consisting of two fields: a selector and an action. The selectors, described below, are compared with the currently processed IP packet until the first match occurs, and then the associated action is performed. The simplest type of action would be directing the packet into defined CBQ class.

The command line of tc filter program, used to configure the filter, consists of three parts: filter specification, a selector and an action. The filter specification can be defined as:

tc filter add dev IF [ protocol PROTO ]
                     [ (preference|priority) PRIO ]
                     [ parent CBQ ]

The protocol field describes protocol that the filter will be applied to. We will only discuss case of ip protocol. The preference field (priority can be used alternatively) sets the priority of currently defined filter. This is important, since you can have several filters (lists of rules) with different priorities. Each list will be passed in the order the rules were added, then list with lower priority (higher preference number) will be processed. The parent field defines the CBQ tree top (e.g. 1:0), the filter should be attached to.

The options described above apply to all filters, not only U32.

12.1.1. U32 selector

The U32 selector contains definition of the pattern, that will be matched to the currently processed packet. Precisely, it defines which bits are to be matched in the packet header and nothing more, but this simple method is very powerful. Let‘s take a look at the following examples, taken directly from a pretty complex, real-world filter:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32   match u32 00100000 00ff0000 at 0 flowid 1:10

For now, leave the first line alone - all these parameters describe the filter‘s hash tables. Focus on the selector line, containing match keyword. This selector will match to IP headers, whose second byte will be 0x10 (0010). As you can guess, the 00ff number is the match mask, telling the filter exactly which bits to match. Here it‘s 0xff, so the byte will match if it‘s exactly 0x10. The at keyword means that the match is to be started at specified offset (in bytes) -- in this case it‘s beginning of the packet. Translating all that to human language, the packet will match if its Type of Service field will have `low delay‘ bits set. Let‘s analyze another rule:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32   match u32 00000016 0000ffff at nexthdr+0 flowid 1:10

The nexthdr option means next header encapsulated in the IP packet, i.e. header of upper-layer protocol. The match will also start here at the beginning of the next header. The match should occur in the second, 32-bit word of the header. In TCP and UDP protocols this field contains packet‘s destination port. The number is given in big-endian format, i.e. older bits first, so we simply read 0x0016 as 22 decimal, which stands for SSH service if this was TCP. As you guess, this match is ambiguous without a context, and we will discuss this later.

Having understood all the above, we will find the following selector quite easy to read: match c0a80100 ffffff00 at 16. What we got here is a three byte match at 17-th byte, counting from the IP header start. This will match for packets with destination address anywhere in 192.168.1/24 network. After analyzing the examples, we can summarize what we have learned.

12.1.2. General selectors

General selectors define the pattern, mask and offset the pattern will be matched to the packet contents. Using the general selectors you can match virtually any single bit in the IP (or upper layer) header. They are more difficult to write and read, though, than specific selectors that described below. The general selector syntax is:

match [ u32 | u16 | u8 ] PATTERN MASK [ at OFFSET | nexthdr+OFFSET]

One of the keywords u32u16 or u8 specifies length of the pattern in bits. PATTERN and MASK should follow, of length defined by the previous keyword. The OFFSET parameter is the offset, in bytes, to start matching. If nexthdr+ keyword is given, the offset is relative to start of the upper layer header.

Some examples:

# tc filter add dev ppp14 parent 1:0 prio 10 u32      match u8 64 0xff at 8      flowid 1:4

Packet will match to this rule, if its time to live (TTL) is 64. TTL is the field starting just after 8-th byte of the IP header.

# tc filter add dev ppp14 parent 1:0 prio 10 u32      match u8 0x10 0xff at nexthdr+13      protocol tcp      flowid 1:3 

FIXME: it has been pointed out that this syntax does not work currently.

Use this to match ACKs on packets smaller than 64 bytes:

## match acks the hard way,
## IP protocol 6,
## IP header length 0x5(32 bit words),
## IP Total length 0x34 (ACK + 12 bytes of TCP options)
## TCP ack set (bit 5, offset 33)
# tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32             match ip protocol 6 0xff             match u8 0x05 0x0f at 0             match u16 0x0000 0xffc0 at 2             match u8 0x10 0xff at 33             flowid 1:3

This rule will only match TCP packets with ACK bit set, and no further payload. Here we can see an example of using two selectors, the final result will be logical AND of their results. If we take a look at TCP header diagram, we can see that the ACK bit is second older bit (0x10) in the 14-th byte of the TCP header (at nexthdr+13). As for the second selector, if we‘d like to make our life harder, we could write match u8 0x06 0xff at 9 instead of using the specific selectorprotocol tcp, because 6 is the number of TCP protocol, present in 10-th byte of the IP header. On the other hand, in this example we couldn‘t use any specific selector for the first match - simply because there‘s no specific selector to match TCP ACK bits.

12.1.3. Specific selectors

The following table contains a list of all specific selectors the author of this section has found in the tc program source code. They simply make your life easier and increase readability of your filter‘s configuration.

FIXME: table placeholder - the table is in separate file ,,selector.html‘‘

FIXME: it‘s also still in Polish :-(

FIXME: must be sgml‘ized

Some examples:

# tc filter add dev ppp0 parent 1:0 prio 10 u32      match ip tos 0x10 0xff      flowid 1:4

FIXME: tcp dst match does not work as described below:

The above rule will match packets which have the TOS field set to 0x10. The TOS field starts at second byte of the packet and is one byte big, so we could write an equivalent general selector: match u8 0x10 0xff at 1. This gives us hint to the internals of U32 filter -- the specific rules are always translated to general ones, and in this form they are stored in the kernel memory. This leads to another conclusion -- the tcp and udp selectors are exactly the same and this is why you can‘t use single match tcp dst 53 0xffff selector to match TCP packets sent to given port -- they will also match UDP packets sent to this port. You must remember to also specify the protocol and end up with the following rule:

# tc filter add dev ppp0 parent 1:0 prio 10 u32         match tcp dst 53 0xffff         match ip protocol 0x6 0xff         flowid 1:2

Advanced filters for (re-)classifying packets

As
explained in the section on classful queueing disciplines, filters are
needed to classify packets into any of the sub-queues. These filters are
called from within the classful qdisc.

Here is an incomplete list of classifiers available:

fw

Bases the decision on how the firewall has
marked the packet. This can be the easy way out if you don‘t want to
learn tc filter syntax. See the Queueing chapter for details.

u32

Bases the decision on fields within the packet (i.e. source IP address, etc)

route

Bases the decision on which route the packet will be routed by

rsvp, rsvp6

Routes packets based on RSVP. Only useful on networks you control - the Internet does not respect RSVP.

tcindex

Used in the DSMARK qdisc, see the relevant section.

Note that in general there
are many ways in which you can classify packet and that it generally
comes down to preference as to which system you wish to use.

Classifiers in general accept a few arguments in common. They are listed here for convenience:

protocol

The protocol this classifier will accept. Generally you will only be accepting only IP traffic. Required.

parent

The handle this classifier is to be attached to. This handle must be an already existing class. Required.

prio

The priority of this classifier. Lower numbers get tested first.

handle

This handle means different things to different filters.

All the following sections will assume you are trying to shape the traffic going to HostA. They will assume that the root class has been configured on 1: and that the class you want to send
the selected traffic to is 1:1.

12.1. The u32 classifier

The U32 filter is the most advanced
filter available in the current implementation. It entirely based on
hashing tables, which make it robust when there are many filter rules.

In its simplest form the U32 filter is
a list of records, each consisting of two fields: a selector and an
action. The selectors, described below, are compared with the currently
processed IP packet until the first match occurs,
and then the associated action is performed. The simplest type of
action would be directing the packet into defined class.

The command line of tc filter program,
used to configure the filter, consists of three parts: filter
specification, a selector and an action. The filter specification can be
defined as:

tc filter add dev IF [ protocol PROTO ]
                     [ (preference|priority) PRIO ]
                     [ parent CBQ ]

The protocol field describes protocol that the filter will be applied to. We will only discuss case of ip protocol. The preference field (priority can be used alternatively) sets the priority of currently defined filter. This is important, since you can have several filters (lists of rules) with different priorities. Each list will be passed in the order the rules were added, then list with lower priority (higher preference number) will be processed. The parent field defines the CBQ tree top (e.g. 1:0), the filter should be attached to.

The options described above apply to all filters, not only U32.

12.1.1. U32 selector

The U32 selector contains definition of the pattern, that will be matched to the currently processed packet. Precisely, it defines which bits are to be matched in the packet header and nothing more, but this simple method is very powerful. Let‘s take a look at the following examples, taken directly from a pretty complex, real-world filter:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32   match u32 00100000 00ff0000 at 0 flowid 1:10

For now, leave the first line alone - all these parameters describe the filter‘s hash tables. Focus on the selector line, containing match keyword. This selector will match to IP headers, whose second byte will be 0x10 (0010). As you can guess, the 00ff number is the match mask, telling the filter exactly which bits to match. Here it‘s 0xff, so the byte will match if it‘s exactly 0x10. The at keyword means that the match is to be started at specified offset (in bytes) -- in this case it‘s beginning of the packet. Translating all that to human language, the packet will match if its Type of Service field will have `low delay‘ bits set. Let‘s analyze another rule:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32   match u32 00000016 0000ffff at nexthdr+0 flowid 1:10

The nexthdr option means next header encapsulated in the IP packet, i.e. header of upper-layer protocol. The match will also start here at the beginning of the next header. The match should occur in the second, 32-bit word of the header. In TCP and UDP protocols this field contains packet‘s destination port. The number is given in big-endian format, i.e. older bits first, so we simply read 0x0016 as 22 decimal, which stands for SSH service if this was TCP. As you guess, this match is ambiguous without a context, and we will discuss this later.

Having understood all the above, we will find the following selector quite easy to read: match c0a80100 ffffff00 at 16. What we got here is a three byte match at 17-th byte, counting from the IP header start. This will match for packets with destination address anywhere in 192.168.1/24 network. After analyzing the examples, we can summarize what we have learned.

12.1.2. General selectors

General selectors define the pattern, mask and offset the pattern will be matched to the packet contents. Using the general selectors you can match virtually any single bit in the IP (or upper layer) header. They are more difficult to write and read, though, than specific selectors that described below. The general selector syntax is:

match [ u32 | u16 | u8 ] PATTERN MASK [ at OFFSET | nexthdr+OFFSET]

One of the keywords u32u16 or u8 specifies length of the pattern in bits. PATTERN and MASK should follow, of length defined by the previous keyword. The OFFSET parameter is the offset, in bytes, to start matching. If nexthdr+ keyword is given, the offset is relative to start of the upper layer header.

Some examples:

Packet will match to this rule, if its time to live (TTL) is 64. TTL is the field starting just after 8-th byte of the IP header.

# tc filter add dev ppp14 parent 1:0 prio 10 u32      match u8 64 0xff at 8      flowid 1:4

The following matches all TCP packets which have the ACK bit set:

# tc filter add dev ppp14 parent 1:0 prio 10 u32      match ip protocol 6 0xff      match u8 0x10 0xff at nexthdr+13      flowid 1:3 

Use this to match ACKs on packets smaller than 64 bytes:

## match acks the hard way,
## IP protocol 6,
## IP header length 0x5(32 bit words),
## IP Total length 0x34 (ACK + 12 bytes of TCP options)
## TCP ack set (bit 5, offset 33)
# tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32             match ip protocol 6 0xff             match u8 0x05 0x0f at 0             match u16 0x0000 0xffc0 at 2             match u8 0x10 0xff at 33             flowid 1:3

This rule will only match TCP packets with ACK bit set, and no further payload. Here we can see an example of using two selectors, the final result will be logical AND of their results. If we take a look at TCP header diagram, we can see that the ACK bit is second older bit (0x10) in the 14-th byte of the TCP header (at nexthdr+13). As for the second selector, if we‘d like to make our life harder, we could write match u8 0x06 0xff at 9 instead of using the specific selectorprotocol tcp, because 6 is the number of TCP protocol, present in 10-th byte of the IP header. On the other hand, in this example we couldn‘t use any specific selector for the first match - simply because there‘s no specific selector to match TCP ACK bits.

The filter below is a modified version of the filter above. The difference is, that it doesn‘t check the ip header length. Why? Because the filter above does only work on 32 bit systems.

tc filter add dev ppp14 parent 1:0 protocol ip prio 10 u32      match ip protocol 6 0xff      match u8 0x10 0xff at nexthdr+13      match u16 0x0000 0xffc0 at 2      flowid 1:3

12.1.3. Specific selectors

The following table contains a list of all specific selectors the author of this section has found in the tc program source code. They simply make your life easier and increase readability of your filter‘s configuration.

FIXME: table placeholder - the table is in separate file ,,selector.html‘‘

FIXME: it‘s also still in Polish :-(

FIXME: must be sgml‘ized

Some examples:

# tc filter add dev ppp0 parent 1:0 prio 10 u32      match ip tos 0x10 0xff      flowid 1:4

FIXME: tcp dport match does not work as described below:

The above rule will match packets which have the TOS field set to 0x10. The TOS field starts at second byte of the packet and is one byte big, so we could write an equivalent general selector: match u8 0x10 0xff at 1. This gives us hint to the internals of U32 filter -- the specific rules are always translated to general ones, and in this form they are stored in the kernel memory. This leads to another conclusion -- the tcp and udp selectors are exactly the same and this is why you can‘t use single match tcp dport 53 0xffff selector to match TCP packets sent to given port -- they will also match UDP packets sent to this port. You must remember to also specify the protocol and end up with the following rule:

# tc filter add dev ppp0 parent 1:0 prio 10 u32         match tcp dport 53 0xffff         match ip protocol 0x6 0xff         flowid 1:2
时间: 2024-10-12 11:02:21

The u32 classifier的相关文章

HTB Linux queuing discipline manual

1. Introduction HTB is meant as a more understandable, intuitive and faster replacement for the CBQ qdisc in Linux. Both CBQ and HTB help you to control the use of the outbound bandwidth on a given link. Both allow you to use one physical link to sim

ngress qdisc

Ingress qdisc All qdiscs discussed so far are egress qdiscs. Each interface however can also have an ingress qdisc which is not used to send packets out to the network adaptor. Instead, it allows you to apply tc filters to packets coming in over the

HTB Linux queuing discipline manual - user guide笔记

1. Introduction HTB is meant as a more understandable, intuitive and faster replacement for the CBQ qdisc in Linux. Both CBQ and HTB help you to control the use of the outbound bandwidth on a given link. Both allow you to use one physical link to sim

iproute2学习笔记

一.替代arp, ifconfig, route等命令 显示网卡和IP地址 [email protected]:~# ip link list 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mt

01原始编译r16的tinav2.5(分色排版)V1.0

01原始编译r16的tinav2.5 2017/12/14 11:44 版本:V1.0 0.(可选)验证一下SDK的MD5值! [email protected]:/home/wwt$ [email protected]:/home/wwt$ md5sum tinav2.5_20171205.tar.gz 17295b52f2cc5d3a8d75274e85961923  tinav2.5_20171205.tar.gz [email protected]:/home/wwt$ 1.原始编译r4

支持向量机: Maximum Margin Classifier

支持向量机即 Support Vector Machine,简称 SVM .我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了! 不过后来我才知道,原来 SVM 它并不是一头机器,而是一种算法,或者,确切地说,是一类算法,当然,这样抠字眼的话就没完没了了,比如,我说 SVM 实际上是一个分类器 (Classifier) ,但是其实也是有用 SVM 来做回归

u32、u16、u8 数据类型

#define U32 unsigned int #define U16 unsigned short #define S32 int #define S16 short int #define U8 unsigned char #define S8 char unsigned char = u8 unsigned short int = u16 unsigned long int =u32 版权声明:本文为博主原创文章,未经博主允许不得转载.

朴素贝叶斯分类器的应用 Naive Bayes classifier

一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B) 可得 P(感冒|打喷嚏x建筑工人)  = P(打喷嚏x建筑工人|感冒)

关于u32中查找和定位最后到bit Number of 1 Bits

题目来源: https://leetcode.com/problems/number-of-1-bits/ 刷leetcode的时候发现了这个题目. 作为常年跑底层嵌入式的我,对于这种题目兴趣还是很浓厚的 class Solution { public: int hammingWeight(uint32_t n) { int cnt = 0; for(int i=0;i<32;i++){ if((n&(1<<i)) !=0){ cnt ++; } } return cnt; }