[本文是自己学习所做笔记,欢迎转载,但请注明出处:http://blog.csdn.net/jesson20121020]
算法描述:
假设给定图G的初始状态是所有顶点均未曾访问过,在G中任选一顶点vi为初始的出发点,则深度优先遍历可定义如下: 首先访问出发点vi,并将其标记为已被访问过;然后,依次从vi出发遍历vi的每一个邻接点vj,若vj未曾访问过,则以vj为新的出发点继续进行深度优先遍历,直至图中所有和vi有路径相通的顶点都被访问到为止。因此,若G是连通图,则从初始出发点开始的遍历过程结束也就意味着完成了对图G的遍历。
算法实现:
分别以邻接矩阵和邻接表作为图的存储结构,给出连通图的深度优先搜索遍历的递归算法。算法描述如下:
(1) 访问出发点vi,并将其标记为已被访问已访问过。
(2) 遍历vi的每一个邻接点vj,若vj未曾访问过,则以vj为新的出发点继续进行深度优先遍历。
完整代码:
用邻接矩阵实现深度优先搜索算法源代码如下:
/** * 深度遍历图 **/ void DFS_MG(MGraph MG,int i){ visit[i] = 1; printf("%c\t",MG.vexs[i]); int j; for (j = 1; j <= MG.vexnum;j++){ if(visit[j] == 0 && MG.arcs[i][j] == 1) DFS_MG(MG,j); } }
用邻接表实现深度优先搜索算法源代码如下:
/** * 深度遍历图 **/ void DFS_AG(ALGraph AG,int i){ ArcPtr p; printf("%c\t",AG.vertices[i].vexdata); visit[i] = 1; p = AG.vertices[i].firstarc; while( p!= NULL ){ if(visit[p->adjvex] == 0) DFS_AG(AG,p->adjvex); p = p->nextarc; } }
算法说明:
对于具有n个顶点,e条边的连通图,算法DFS_MG,DFS_AG
均调用n次。除了初始调用是来自外部,基于n-1次调用均是来自DFS_MG和DFS_AG内部的递归调用,用邻接矩阵实现时,遍历一个顶点的所有邻接点需要O(n)时间,则遍历整个图需要O(n^2),即DFS_MG的时间复杂度为O(n^2)。
用邻接表实现时,遍历n个顶点的所有邻接点是对边表节点的扫描一遍,故算法DFS_AG时间复杂度为O(n+e)。
采用深度优先遍历算法时,都要用到访问标志,所以该算法的空间复杂度为O(n).
邻接矩阵实现深度优先搜索算法完整代码如下:
/* ============================================================================ Name : Graph.c Author : jesson20121020 Version : 1.0 Description : create Graph using Adjacency Matrix, Ansi-style ============================================================================ */ #include <stdio.h> #include <stdlib.h> #define MAX_VEX_NUM 50 typedef char VertexType; typedef enum { DG, UDG } GraphType; typedef struct { VertexType vexs[MAX_VEX_NUM]; int arcs[MAX_VEX_NUM][MAX_VEX_NUM]; int vexnum, arcnum; GraphType type; } MGraph; //设置图中顶点访问标志 int visit[MAX_VEX_NUM]; /** * 根据名称得到指定顶点在顶点集合中的下标 * vex 顶点 * return 如果找到,则返回下标,否则,返回0 */ int getIndexOfVexs(char vex, MGraph *MG) { int i; for (i = 1; i <= MG->vexnum; i++) { if (MG->vexs[i] == vex) { return i; } } return 0; } /** * 创建邻接矩阵 */ void create_MG(MGraph *MG) { int i, j, k; int v1, v2, type; char c1, c2; printf("Please input graph type DG(0) or UDG(1) :"); scanf("%d", &type); if (type == 0) MG->type = DG; else if (type == 1) MG->type = UDG; else { printf("Please input correct graph type DG(0) or UDG(1)!"); return; } printf("Please input vexmun : "); scanf("%d", &MG->vexnum); printf("Please input arcnum : "); scanf("%d", &MG->arcnum); getchar(); for (i = 1; i <= MG->vexnum; i++) { printf("Please input %dth vex(char):", i); scanf("%c", &MG->vexs[i]); getchar(); } //初始化邻接矩阵 for (i = 1; i <= MG->vexnum; i++) { for (j = 1; j <= MG->vexnum; j++) { MG->arcs[i][j] = 0; } } //输入边的信息,建立邻接矩阵 for (k = 1; k <= MG->arcnum; k++) { printf("Please input %dth arc v1(char) v2(char) : ", k); scanf("%c %c", &c1, &c2); v1 = getIndexOfVexs(c1, MG); v2 = getIndexOfVexs(c2, MG); if (MG->type == 1) MG->arcs[v1][v2] = MG->arcs[v2][v1] = 1; else MG->arcs[v1][v2] = 1; getchar(); } } /** * 打印邻接矩阵和顶点信息 */ void print_MG(MGraph MG) { int i, j; if(MG.type == DG){ printf("Graph type: Direct graph\n"); } else{ printf("Graph type: Undirect graph\n"); } printf("Graph vertex number: %d\n",MG.vexnum); printf("Graph arc number: %d\n",MG.arcnum); printf("Vertex set:\n "); for (i = 1; i <= MG.vexnum; i++) printf("%c\t", MG.vexs[i]); printf("\nAdjacency Matrix:\n"); for (i = 1; i <= MG.vexnum; i++) { j = 1; for (; j < MG.vexnum; j++) { printf("%d\t", MG.arcs[i][j]); } printf("%d\n", MG.arcs[i][j]); } } /** * 初始化顶点访问标志 **/ void init_Visit(){ int i; for(i = 0;i < MAX_VEX_NUM;i++) visit[i] = 0; } /** * 深度遍历图 **/ void DFS_MG(MGraph MG,int i){ visit[i] = 1; printf("%c\t",MG.vexs[i]); int j; for (j = 1; j <= MG.vexnum;j++){ if(visit[j] == 0 && MG.arcs[i][j] == 1) DFS_MG(MG,j); } } /** * 主函数 */ int main(void) { MGraph MG; create_MG(&MG); print_MG(MG); printf("The result of DFS:\n"); DFS_MG(MG,1); return EXIT_SUCCESS; }
邻接表实现深度优先搜索算法的完整代码如下:
/* ============================================================================ Name : ALGraph.c Author : jesson20121020 Version : 1.0 Copyright : Your copyright notice Description : Graph using linkList, Ansi-style ============================================================================ */ #include <stdio.h> #include <stdlib.h> #include <stdio.h> #define MAX_VERTEX_NUM 50 typedef enum { DG, UDG } GraphType; typedef char VertexType; //表节点 typedef struct ArcNode { int adjvex; //邻接节点 int weight; //边权重 struct ArcNode *nextarc; //下一个节点指针 } ArcNode, *ArcPtr; //头节点 typedef struct { VertexType vexdata; int id; ArcPtr firstarc; } VNode; //头节点数组 typedef struct { VNode vertices[MAX_VERTEX_NUM]; int vexnum, arcnum; GraphType type; } ALGraph; int visit[MAX_VERTEX_NUM]; /** * 根据顶点字符得到在顶点数组中的下标 */ int getIndexOfVexs(char vex, ALGraph *AG) { int i; for (i = 1; i <= AG->vexnum; i++) { if (AG->vertices[i].vexdata == vex) { return i; } } return 0; } /** * 创建邻接表 */ void create_AG(ALGraph *AG) { ArcPtr p,q; int i, j, k, type; VertexType v1, v2; printf("Please input graph type UG(0) or UDG(1) :"); scanf("%d", &type); if (type == 0) AG->type = DG; else if (type == 1) AG->type = UDG; else { printf("Please input correct graph type UG(0) or UDG(1)!"); return; } printf("please input vexnum:"); scanf("%d", &AG->vexnum); printf("please input arcnum:"); scanf("%d", &AG->arcnum); getchar(); for (i = 1; i <= AG->vexnum; i++) { printf("please input the %dth vex(char) : ", i); scanf("%c", &AG->vertices[i].vexdata); getchar(); AG->vertices[i].firstarc = NULL; } for (k = 1; k <= AG->arcnum; k++) { printf("please input the %dth arc v1(char) v2(char) :", k); scanf("%c %c", &v1, &v2); i = getIndexOfVexs(v1, AG); j = getIndexOfVexs(v2, AG); //根据图的类型创建邻接表 //方法1,插入到链表头 /* if (AG->type == DG) { //有向图 p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = j; p->nextarc = AG->vertices[i].firstarc; AG->vertices[i].firstarc = p; } else { //无向图 p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = j; p->nextarc = AG->vertices[i].firstarc; AG->vertices[i].firstarc = p; p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = i; p->nextarc = AG->vertices[j].firstarc; AG->vertices[j].firstarc = p; } */ //方法2,插入到链表尾 if (AG->type == DG) { //有向图 p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = j; //表为空 if(AG->vertices[i].firstarc == NULL){ AG->vertices[i].firstarc = p; } else{ //找最后一个表节点 q = AG->vertices[i].firstarc; while(q->nextarc != NULL){ q = q->nextarc; } q->nextarc = p; } p->nextarc = NULL; } else { //无向图 p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = j; //表为空 if(AG->vertices[i].firstarc == NULL){ AG->vertices[i].firstarc = p; } else{ //找最后一个表节点 q = AG->vertices[i].firstarc; while(q->nextarc != NULL){ q = q->nextarc; } q->nextarc = p; } p->nextarc = NULL; p = (ArcPtr) malloc(sizeof(ArcNode)); p->adjvex = i; //表为空 if(AG->vertices[j].firstarc == NULL){ AG->vertices[j].firstarc = p; } else{ //找最后一个表节点 q = AG->vertices[j].firstarc; while(q->nextarc != NULL){ q = q->nextarc; } q->nextarc = p; } p->nextarc = NULL; } getchar(); } } /** * 输出图的相关信息 */ void print_AG(ALGraph AG) { ArcPtr p; int i; if (AG.type == DG) { printf("Graph type: Direct graph\n"); } else { printf("Graph type: Undirect graph\n"); } printf("Graph vertex number: %d\n", AG.vexnum); printf("Graph arc number: %d\n", AG.arcnum); printf("Vertex set :\n"); for (i = 1; i <= AG.vexnum; i++) printf("%c\t", AG.vertices[i].vexdata); printf("\nAdjacency List:\n"); for (i = 1; i <= AG.vexnum; i++) { printf("%d", i); p = AG.vertices[i].firstarc; while (p != NULL) { printf("-->%d", p->adjvex); p = p->nextarc; } printf("\n"); } } /** * 初始化顶点访问标志 **/ void init_Visit(){ int i; for(i = 0;i < MAX_VERTEX_NUM;i++) visit[i] = 0; } /** * 深度遍历图 **/ void DFS_AG(ALGraph AG,int i){ ArcPtr p; printf("%c\t",AG.vertices[i].vexdata); visit[i] = 1; p = AG.vertices[i].firstarc; while( p!= NULL ){ if(visit[p->adjvex] == 0) DFS_AG(AG,p->adjvex); p = p->nextarc; } } int main(void) { ALGraph AG; create_AG(&AG); print_AG(AG); printf("The result of DFS:\n"); DFS_AG(AG,1); return EXIT_SUCCESS; }
时间: 2024-10-12 03:58:48