八.DBN深度置信网络

  BP神经网络是1968年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构。BP网络神经网络由输入层、隐藏层和输出层三部分构成,无论隐藏层是一层还是多层,只要是按照误差反向传播算法构建起来的网络(不需要进行预训练,随机初始化后直接进行反向传播),都称为BP神经网络。BP神经网络在单隐层的时候,效率较高,当堆积到多层隐藏层的时候,反向传播的效率就会大大降低,因此BP神经网络在浅层神经网路中应用较广,但由于其隐层数较少,所以映射能力也十分有限,所以浅层结构的BP神经网络多用于解决一些比较简单的映射建模问题。

??在深层神经网络中,如果仍采用BP的思想,就得到了BP深层网络结构,即BP-DNN结构。由于隐藏层数较多(通常在两层以上),损失函数关于W,b的偏导自顶而下逐层衰减,等传播到最底层的隐藏层时,损失函数关于W,b的偏导就几乎为零了。如此训练,效率太低,需要进行很长很长时间的训练才行,并且容易产生局部最优问题。因此,便有了一些对BP-DNN进行改进的方法,例如,采用ReLU的激活函数来代替传统的sigmoid函数,可以有效地提高训练的速度。此外,除了随机梯度下降的反向传播算法,还可以采用一些其他的高效的优化算法,例如小批量梯度下降算法(Mini-batch Gradient Descent)、冲量梯度下降算法等,也有利于改善训练的效率问题。直到2006年,Hinton提出了逐层贪婪预训练受限玻尔兹曼机的方法,大大提高了训练的效率,并且很好地改善了局部最优的问题,算是开启了深度神经网络发展的新时代。Hinton将这种基于玻尔兹曼机预训练的结构称为深度置信网络结构(DBN),用深度置信网络构建而成的DNN结构,就是本文要重点介绍的一种标准型的DNN结构,即DBN-DNN。

深度置信神经网络

如图一所示,以3层隐藏层结构的DBN-DNN为例,网络一共由3个受限玻尔兹曼机(RBM,Restricted Boltzmann Machine)单元堆叠而成,其中RBM一共有两层,上层为隐层,下层为显层。堆叠成DNN的时,前一个RBM的输出层(隐层)作为下一个RBM单元的输入层(显层),依次堆叠,便构成了基本的DBN结构,最后再添加一层输出层,就是最终的DBN-DNN结构。

图一 深度置信神经网络(DBN-DNN)结构

??受限玻尔兹曼机(RBM)是一种具有随机性的生成神经网络结构,它本质上是一种由具有随机性的一层可见神经元和一层隐藏神经元所构成的无向图模型。它只有在隐藏层和可见层神经元之间有连接,可见层神经元之间以及隐藏层神经元之间都没有连接。并且,隐藏层神经元通常取二进制并服从伯努利分布,可见层神经元可以根据输入的类型取二进制或者实数值。

??进一步地,根据可见层(v)和隐藏层(h)的取值不同,可将RBM分成两大类,如果v和h都是二值分布,那么它就是Bernoulli-Bernoulli RBM(贝努力-贝努力RBM);如果v是实数,比如语音特征,h为二进制,那么则为Gaussian-Bernoulli RBM(高斯-贝努力RBM)。因此,图一中的RBM1为高斯-贝努力,RBM2和RBM3都是贝努力-贝努力RBM。

??既然提到了受限玻尔兹曼机(RBM),就不得不说一下,基于RBM构建的两种模型:DBN和DBM。如图二所示,DBN模型通过叠加RBM进行逐层预训练时,某层的分布只由上一层决定。例如,DBN的v层依赖于h1的分布,h1只依赖于h2的分布,也就是说,h1的分布不受v的影响,确定了v的分布,h1的分布只由h2来确定。而DBM模型为无向图结构,也就是说,DBM的h1层是由h2层和v层共同决定的,它是双向的。如果从效果来看,DBM结构会比DBN结构具有更好的鲁棒性,但是其求解的复杂度太大,需要将所有的层一起训练,不太利于应用。而DBN结构,如果借用RBM逐层预训练的方法,就方便快捷了很多,便于应用,因此应用的比较广泛。

原文地址:https://www.cnblogs.com/pythonlearing/p/9979161.html

时间: 2024-10-27 03:52:49

八.DBN深度置信网络的相关文章

机器学习——DBN深度信念网络详解(转)

深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入.很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在.所以,我们说,输出是对输入的一种重构.其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数

受限玻尔兹曼机和深度置信网络

2016-07-20   11:21:33 1受限玻尔兹曼机 受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)[1]由深度学习专家Hinton提出,有很多方面的应用,最成熟的有图像领域的图像识别和手写体数字识别,作为协同过滤算法对某一个未知值做预测,针对具有高维时间序列属性的数据,如人体移动的特征,同样也是做预测,还有针对文档数据分类和音频数据识别等等. 受限玻尔兹曼机RBM是一种特殊的马尔科夫随机场(Markov Random Field, MRF).一个

深度信念网络

深度信念网络 (Deep Belief Network, DBN) 由 Geoffrey Hinton 在 2006 年提出.它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据.我们不仅可以使用 DBN 识别特征.分类数据,还可以用它来生成数据.下面的图片展示的是用 DBN 识别手写数字: 图 1 用深度信念网络识别手写数字.图中右下角是待识别数字的黑白位图,它的上方有三层隐性神经元.每一个黑色矩形代表一层神经元,白点代表处于开启状态的神经元,黑色代表处

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 DBN实例 //****************例2(读取固定样本:来源于经典优化算法測试函数Sphere Model)***********// //2 读取样本数据 Logge

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 2基础及源代码解析 2.1 Deep Belief Network深度信念网络基础知识 1)综合基础知识參照: http://tieba.baidu.com/p/2895759455   http://wenku.baidu.com/link?url=

深度复数网络 Deep Complex Networks

转自:https://www.jiqizhixin.com/articles/7b1646c4-f9ae-4d5f-aa38-a6e5b42ec475  (如有版权问题,请联系本人) 目前绝大多数深度学习模型中的数学都是实数值的,近日,蒙特利尔大学.加拿大国家科学院-能源/材料/通信研究中心(INRS-EMT).微软 Maluuba.Element AI 的多名研究者(其中包括 CIFAR Senior Fellow Yoshua Bengio)在 arXiv 上发布了一篇 NIPS 2017(

深度卷积网络CNN与图像语义分割

转载请注明出处: http://xiahouzuoxin.github.io/notes/ 级别1:DL快速上手 级别2:从Caffe着手实践 级别3:读paper,网络Train起来 级别3:Demo跑起来 读一些源码玩玩 熟悉Caffe接口,写Demo这是硬功夫 分析各层Layer输出特征 级别4:何不自己搭个CNN玩玩 级别5:加速吧,GPU编程 关于语义分割的一些其它工作 说好的要笔耕不缀,这开始一边实习一边找工作,还摊上了自己的一点私事困扰,这几个月的东西都没来得及总结一下.这就来记录

深度学习网络调参技巧

转自https://zhuanlan.zhihu.com/p/24720954?utm_source=zhihu&utm_medium=social 之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得.不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要.同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流. 好的实验环境是成功的一半 由于深度学习实

深度卷积网络

深度卷积网络 涉及问题: 1.每个图如何卷积: (1)一个图如何变成几个? (2)卷积核如何选择? 2.节点之间如何连接? 3.S2-C3如何进行分配? 4.16-120全连接如何连接? 5.最后output输出什么形式? ①各个层解释: 我们先要明确一点:每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征,然后每个Feature Map有多个神经元. C1层是一个卷积层(为什么是卷积?卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强