多元正态分布

随即变量概率分布

    我们将p个随机变量X1,X2,X3...Xp整体称为p维随机向量,记为X=(X1,X2,X3....Xp)‘ 。

    我们可以将X理解为一个p维欧式空间中的一个向量。

    其概率分布参照一维随机变量即可

    离散型随机变量:

    连续型随机变量:

    考点:

    1.证明某函数是密度函数

      首先密度函数在定义域内处处不为负,其次密度函数从负无穷到正无穷的积分值为0。

    2.求某分量的边缘密度函数,即是对除去该分量以外的所有分量进行积分。

    3.询问多个随机变量是否相互独立,对每个分量求解其边缘密度函数,若这些边缘分量函数的乘积等于联合分布密度函数,则说明它们相互独立。

随机向量的数字特征

    离散型随机变量:

    连续型随机变量:

    D(X)有一个简单的计算公式:

    

    

原文地址:https://www.cnblogs.com/Hikigaya-Hachiman/p/10182728.html

时间: 2024-10-29 18:44:04

多元正态分布的相关文章

multivariate_normal 多元正态分布

多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度函数为钟形曲面,等高线是椭圆线族,并且二维正态分布的两个边缘分布都是一维正态分布,如图 np.random.multivariate_normal 生成一个服从多元正态分布的数组 [适用于 python3,但在 python2 中也能用] multivariate_normal(mean, cov,

【5】多元正态分布的一些性质

若将\(X\sim N_p(\mu,\Sigma)\)进行分割: \[ X= \left[ \begin{array}{c} X^{(1)}_r\X^{(2)}_{p-r} \end{array} \right], \mu= \left[ \begin{array}{c} \mu^{(1)}_r\\mu^{(2)}_{p-r} \end{array} \right], \Sigma= \left[ \begin{array}{c|c} \Sigma_{11} &\Sigma_{12}\\ \hl

再谈正态分布或高斯函数

它的历史不知道,如何推导出来的,没管啊,不过我很有兴趣看看啊,但没有看.高斯函数的用处太多了: 首先说明一点哦:正态分布是高斯函数的积分为1的情况: 一维情况下: 一维高斯高斯函数的公式: 而正态分布的公式表示为: 它们的区别仅仅在于前面的系数不一样:正态分布之所以需要这样的系数是为了在区间的积分为1:由此也可以看出:的在区间的积分为 . 所以呢,高斯函数的关键就是那个指数函数形式: 另外:指明了锋值的位置:控制着曲线的形状,越小,曲线越陡峭: 注意1:在正态分布中,经常用于标准的正态分布:即服

SPSS数据分析—多元方差分析

之前的单因素方差分析和多因素方差分析,都在针对一个因变量,而实际工作中,经常会碰到多个因变量的情况,如果单纯的将其拆分为多个单因变量的做法不妥,需要使用多元方差分析或因子分析 多元方差分析与一元方差分析本质区别是:一元方差分析是组间均方与组内均方进行比较,而多元方差分析时组间方差协方差矩阵与组内方差协方差矩阵进行比较,这也解释了为何不做多次的一元方差分析,因为一元方差分析不能分析出自变量对多个因变量的协方差结构模式的影响,而多元方差分析同时考察多个因变量而不是一个,把多个因变量看做一个整体联合分

Hotelling T2检验和多元方差分析

1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态分布N(μ1,∑),N(μ2,∑),欲检验 H0:μ1=μ2 H1:μ1≠μ2 分别计算出两样本每个变量的均值构成的均向量X.Y及合并的组内协方差阵S,则统计量T2为 其中,S=(Lx+Ly)/(n+m-2),为合并协方差矩阵,分别为两样本的离差阵,即: 求得T2后,可查相应界值表得到P值,从而作出

正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影响力. 若随机变量X服从一个数学期望为μ.标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度.因其曲线呈钟形,因此人们又常常称之为钟形曲线.我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲

ML—R常用多元统计分析包(持续更新中……)

基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面要综述的包主要分为以下几个部分: 1) 多元数据可视化(Visualising multivariate data): 绘图方法: 基本画图函数(如:pairs().coplot())和lattice包里的画图函数(xyplot().splom())可以画成对列表的二维散点图,3维密度图.car包里的scatterplot.matrix()函数提供更强大的二维散点图的画法.cwhmisc包集合里的

numpy的random模块

[说明] 翻译自官网的文档. 随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布.

R语言实战(五)方差分析与功效分析

本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析