Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_训练模型

原理就不多讲了,直接上代码,有详细注释。

#coding:utf-8

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets(‘MNIST_data‘,one_hot=True)

#每个批次的大小
batch_size = 100

n_batch = mnist.train._num_examples // batch_size

def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)
    return tf.Variable(initial)

#卷基层
def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=‘SAME‘)
#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME‘)
#定义两个placeholder
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32,[None,10])

#改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image = tf.reshape(x, [-1,28,28,1])

#初始化第一个卷基层的权值和偏置
W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的
b_conv1 = bias_variable([32])  #每个卷积核一个偏置值

#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling

#初始化第二个卷基层的权值和偏置
W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征  由于前一层操作得到了32个特征图
b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值

#把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling

#28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14
#第二次卷积后 变为14x14 第二次池化后变为7x7
#通过上面操作后得到64张7x7的平面

#初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) #1024个节点

#把第二个池化层的输出扁平化为一维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#keep_prob用来表示神经元的输出概率
keep_prob  = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])

#计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) 

#交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

#使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(50):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc))  saver.save(sess,save_path=‘/home/xxx/logs/mnistmodel‘,global_step=1)#将训练出来的权重参数保存

结果

Iter 0, Testing Accuracy= 0.8517
Iter 1, Testing Accuracy= 0.9612
Iter 2, Testing Accuracy= 0.9769
Iter 3, Testing Accuracy= 0.9804
Iter 4, Testing Accuracy= 0.9832
Iter 5, Testing Accuracy= 0.9844
Iter 6, Testing Accuracy= 0.988
Iter 7, Testing Accuracy= 0.9882
Iter 8, Testing Accuracy= 0.9875
Iter 9, Testing Accuracy= 0.9889
Iter 10, Testing Accuracy= 0.9891
Iter 11, Testing Accuracy= 0.9897
Iter 12, Testing Accuracy= 0.9891
Iter 13, Testing Accuracy= 0.9897
Iter 14, Testing Accuracy= 0.9905
Iter 15, Testing Accuracy= 0.9913
Iter 16, Testing Accuracy= 0.9908
Iter 17, Testing Accuracy= 0.9909
Iter 18, Testing Accuracy= 0.9913
Iter 19, Testing Accuracy= 0.9915
Iter 20, Testing Accuracy= 0.9902
Iter 21, Testing Accuracy= 0.9899
Iter 22, Testing Accuracy= 0.9912
Iter 23, Testing Accuracy= 0.9911
Iter 24, Testing Accuracy= 0.9907
Iter 25, Testing Accuracy= 0.9918
Iter 26, Testing Accuracy= 0.9919
Iter 27, Testing Accuracy= 0.9916
Iter 28, Testing Accuracy= 0.9899
Iter 29, Testing Accuracy= 0.9924
Iter 30, Testing Accuracy= 0.9913
Iter 31, Testing Accuracy= 0.992
Iter 32, Testing Accuracy= 0.9927
Iter 33, Testing Accuracy= 0.9919
Iter 34, Testing Accuracy= 0.9922
Iter 35, Testing Accuracy= 0.9918
Iter 36, Testing Accuracy= 0.9932
Iter 37, Testing Accuracy= 0.9924
Iter 38, Testing Accuracy= 0.9917
Iter 39, Testing Accuracy= 0.9919
Iter 40, Testing Accuracy= 0.9933
Iter 41, Testing Accuracy= 0.9924
Iter 42, Testing Accuracy= 0.9926
Iter 43, Testing Accuracy= 0.9932
Iter 44, Testing Accuracy= 0.9922
Iter 45, Testing Accuracy= 0.9925
Iter 46, Testing Accuracy= 0.9928
Iter 47, Testing Accuracy= 0.9935
Iter 48, Testing Accuracy= 0.9922
Iter 49, Testing Accuracy= 0.9926

下面来一个简洁版本的

# load MNIST datafrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("Mnist_data/", one_hot=True)

# start tensorflow interactiveSessionimport tensorflow as tfsess = tf.InteractiveSession()batch_size = 50

n_batch = mnist.train._num_examples // batch_size

# weight initializationdef weight_variable(shape):    initial = tf.truncated_normal(shape, stddev=0.1)    return tf.Variable(initial)

def bias_variable(shape):    initial = tf.constant(0.1, shape = shape)    return tf.Variable(initial)

# convolutiondef conv2d(x, W):    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘)# poolingdef max_pool_2x2(x):    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)

# Create the model# placeholderx = tf.placeholder("float", [None, 784])y_ = tf.placeholder("float", [None, 10])# variablesW = tf.Variable(tf.zeros([784,10]))b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W) + b)

# first convolutinal layerw_conv1 = weight_variable([5, 5, 1, 32])b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1, 28, 28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)h_pool1 = max_pool_2x2(h_conv1)

# second convolutional layerw_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)h_pool2 = max_pool_2x2(h_conv2)

# densely connected layerw_fc1 = weight_variable([7*7*64, 1024])b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

# dropoutkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# readout layerw_fc2 = weight_variable([1024, 10])b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)

# train and evaluate the modelcross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))sess.run(tf.initialize_all_variables())

for i in range(20000):    batch = mnist.train.next_batch(50)    if i%100 == 0:        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})        print ("step %d, train accuracy %g" %(i, train_accuracy))    train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})

print ("test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

原文地址:https://www.cnblogs.com/shuimuqingyang/p/9967961.html

时间: 2024-11-05 12:21:41

Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_训练模型的相关文章

tensorflow学习之路-----卷积神经网络个人总结

卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其中过拟合:电脑太过于自信,想把所有的数据都模拟下来.但是这并不符合我们的实际的需求 激励函数:激活某一些参数 卷积神经网络: 1.一般的结构:输入数据.卷积层.池化层.卷积层.池化层.全连接层.全连接层.误差分析.参数优化.显示精确度 2.每一个层的要求: 输入数据:类型:[-1(表示能接受任意张图

深度学习笔记1(卷积神经网络)

深度学习笔记1(卷积神经网络) 在看完了UFLDL教程之后,决定趁热打铁,继续深度学习的学习,主要想讲点卷积神经网络,卷积神经网络是深度学习的模型之一,还有其它如AutoEncoding.Deep Belief Network.Restricted Boltzmann Machine和sparse coding等. 在UFLDL教程中提到了针对大型图像的处理,使用卷积和池化的概念.原因主要对于全连接网络,需要的参数就有很多.比如对于一副1000*1000的图像,hidden layer也为100

Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

近日,Neuromation 团队在 Medium 上撰文介绍其最新研究成果:利用卷积神经网络(CNN)评估儿童骨龄,这一自动骨龄评估系统可以得到与放射科专家相似或更好的结果.该团队评估了手骨不同区域,发现仅对掌骨和近端指骨进行评估,得到的结果与对整个手骨进行评估的结果相差无几.为了克服放射图像的质量和多样性问题,该团队引入了严格的清理和标准化过程,以增强模型的鲁棒性和准确率,提升骨龄评估的准确率.提高结果的可复现性以及临床医生的效率. Alexander 的论文<Pediatric Bone

deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2.LSTM(Long Short Term Memory)长短期记忆神经网络模型 详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html 3.LSTM长短期记忆神经网络处理Mnist数据集 1 2 3 4 5 6 7 8 9 10 11

【深度学习与TensorFlow 2.0】卷积神经网络(CNN)

注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data

学习笔记TF027:卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像. SIFT,缩放.平移.旋转.视角转变.亮度调整畸变的一定程度内,具有不变性.有局限性,ImageNet ILSVRC比赛最好结果错误率在26%以上,常年难以突破. 卷积神经网络提取特征效果更好,分类训练时自动提取最有效特征.卷积神经网络CNN,降低图像数据预处理要求,避免复杂特征工程.CNN使用

机器学习:利用卷积神经网络实现图像风格迁移 (一)

相信很多人都对之前大名鼎鼎的 Prisma 早有耳闻,Prisma 能够将一张普通的图像转换成各种艺术风格的图像,今天,我们将要介绍一下Prisma 这款软件背后的算法原理.就是发表于 2016 CVPR 一篇文章, " Image Style Transfer Using Convolutional Neural Networks" 算法的流程图主要如下: 总得来说,就是利用一个训练好的卷积神经网络 VGG-19,这个网络在ImageNet 上已经训练过了. 给定一张风格图像 a 和

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-01-CNN基础知识点

第一天<CNN基础知识点>From:Convolutional Neural Networks (LeNet) 神经认知机. CNN的灵感来源在诸多论文中已经讲得很全面了,就是伟大的生物发现Receptive Field(感受野细胞).根据这个概念提出了神经认知机.它的主要作用就是Recept部分图像信息(或特征),然后通过分层递交相连,将各个局部特征组合成整个图像特征. 需要仔细阅读的论文包括: (1) 第一篇关于感受野功能的论文Receptive fields and functional

CV学习资料《卷积神经网络与视觉计算》+《深度学习实践计算机视觉》+《视觉SLAM十四讲从理论到实践》电子资料代码分析

视觉和图形学真是一家,基础都一样! 如果学习图像识别,计算机视觉,推荐电子书<视觉SLAM十四讲:从理论到实践>,系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动.非线性优化,又包括计算机视觉的算法实现,例如多视图几何.回环检测等. 一个周读完了,代码很清晰!Particle Filtering,KF,EKF, Batch Optimization, Lie Group,ICP,LK光流... 尤其惊喜的是文末作者看好的IMU-SL