UVA 11324.The Largest Clique tarjan缩点+拓扑dp

题目链接:https://vjudge.net/problem/UVA-11324

题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相互可达也可以)。

思路:同一个强联通分量中满足结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相互可达也可以)。把强联通分量收缩点后得到scc图,让每个scc结点的权值等于他的结点数,则求scc图上权最大的路径。拓扑dp,也可以直接bfs,但是要建立一个新的起点,连接所有入度为0的结点。

代码:

#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=2e5+100,INF=0x3f3f3f3f,MOD=1e9+7;
map<int,vector<int> >G;
int pre[MAXN],lowlink[MAXN],sccno[MAXN],dfs_color,scc_cut;
stack<int>S;
map<int,vector<int> >NG;
int deg[MAXN];
int in[MAXN];
void dfs(int u)
{
    pre[u]=lowlink[u]=++dfs_color;
    S.push(u);
    for(int i=0; i<G[u].size(); i++)
    {
        int v=G[u][i];
        if(!pre[v])
        {
            dfs(v);
            lowlink[u]=min(lowlink[u],lowlink[v]);
        }
        else if(!sccno[v])
            lowlink[u]=min(lowlink[u],lowlink[v]);
    }
    if(lowlink[u]==pre[u])
    {
        scc_cut++;
        while(!S.empty())
        {
            int x=S.top();
            S.pop();
            sccno[x]=scc_cut;
            deg[scc_cut]++;
            if(x==u) break;
        }
    }
}
void find_scc(int n)
{
    dfs_color=scc_cut=0;
    memset(pre,0,sizeof(pre));
    memset(sccno,0,sizeof(sccno));
    memset(deg,0,sizeof(deg));
    for(int i=1; i<=n; i++)
        if(!pre[i]) dfs(i);
}
void re_build(int n)
{
    for(int i=1; i<=scc_cut; i++) in[i]=0,NG[i].clear();
    for(int u=1; u<=n; u++)
    {
        for(int i=0; i<G[u].size(); i++)
        {
            int v=G[u][i];
            if(sccno[u]==sccno[v]) continue;
            in[sccno[v]]++;
            NG[sccno[u]].push_back(sccno[v]);
        }
    }
    for(int i=1; i<=n; i++) G[i].clear();
}
queue<int>q;
int ans[MAXN];
void topsort()
{
    memset(ans,0,sizeof(ans));
    for(int i=1; i<=scc_cut; i++)
        if(in[i]==0) ans[i]=deg[i],q.push(i);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=0; i<NG[u].size(); i++)
        {
            int v=NG[u][i];
            ans[v]=max(ans[v],ans[u]+deg[v]);
            in[v]--;
            if(in[v]==0) q.push(v);
        }
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1; i<=m; i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            G[u].push_back(v);
        }
        find_scc(n);
        re_build(n);
        topsort();
        int Max=0;
        for(int i=1; i<=scc_cut; i++)
            Max=max(Max,ans[i]);
        cout<<Max<<endl;
    }
    return 0;
}

tarjan缩点+拓扑dp

时间: 2024-12-25 11:05:51

UVA 11324.The Largest Clique tarjan缩点+拓扑dp的相关文章

UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每个点的权值就是当前强连通分量点的个数. /* Tarjan算法求有向图的强连通分量set记录了强连通分量 Col记录了强连通分量的个数. */ #include <iostream> #include<cstring> #include<cstdio> #include<string> #include<algo

UVA - 11324 The Largest Clique (强连通缩点+dp)

题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉自己的建图写得好丑啊,一直在纠结用数组还是结构体~~ 1 #include<bits/stdc++.h> 2 3 using namespace std; 4 const int N=1e5+10; 5 int head[N],nxt[N],to[N],ne,n,m; 6 void addedge

uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2299 题意:输入n和m,有n个点和m条有向边,求出一个节点集合包括的节点个数最多,而且该节点内的不论什么两点a,b,要么a能到达b,要么b能到达a,要么a和b互相到达. 思路:强连通分量缩点形成有向无环图DAG,把缩点后的每一个点的权值置为该强连通分量的节点个

UVA 11324 - The Largest Clique(强连通分量+缩点)

UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内任意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分量,构造出scc之后,缩点,每个点的权值是集合点个数,然后做一遍dag找出最大权值路径即可 代码: #include <cstdio> #include <cstring> #include <vector> #include <stack> #include

UVA 11324 The Largest Clique (强连通分量缩点,图DP)

题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2299 题意: 给你一个有向图,求一个点集合的最大大小,使得此点集合中对于任意点对(u,v),有从u到v或者从v到u的边 方法: 先找强连通分量缩点,每个强连通分量显然满足条件,然后在缩点后的图中找到一条权值最大的路径,权值为此路径的点权之和,点权为这个

uva 11324 The Largest Clique(图论-tarjan,动态规划)

Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First, create a new graph T(G) to have the same vertex set as G. Create a directed edge between two vertices u and v in T(G) if and only if there is a path

UVA 11324 The Largest Clique (强连通缩点 + DAG最长路)

链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=30726 题意 : 有向图G,求一个最大的点集,使得点集中任意两个节点u和v,满足 要么u可以到达v,要么v可以到达u,或者u和v可以相互到达. 可以强连通缩点成一张DAG,以为每个强连通分量要么选要么不选.求DAG上的最长路 二次建图 用了2种不同的方法,也分别用了记忆花搜索DP和直接递推DP vector建图和记忆化搜索: #include <algorithm

UVAoj 11324 - The Largest Clique(tarjan + dp)

题意:给定一个有向图,寻找一个点数最大集合,使得这个集合中的任意两个点 u,v, 都有u->v 或者 v->u 或者u<==>v 思路:首先将强连通分量通过tarjan算法求出来,然后进行缩点,也就是每一个缩点 所组成的图就是一个DAG图!令每一个点的权值就是这个缩点所包含节点(也就是对应的 强连通分量的节点数目),因为强连通分量的任意的两个节点都是相互可达的,那么这个 缩点要么选要么不选,问题就转换成了DAG图上的最长路径! 1 #include<iostream>

Uva 11324 The Largest Clique【强连通 DAG动规 spfa】

白书上的例题 做一遍tarjan后,缩点,每一个scc节点的权为它的结点数,做一次DAG上的动规,求出路径上的最大点权和,就可以了 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 #include<stack> 6 #include<vector> 7 using namespace std; 8 9 const i