A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
思路:这题首先想到的是递归,可是递归效率太慢。超时不解释。
于是换动态规划,也算典型的动态规划的题了。
详细代码例如以下:
public class Solution { public int uniquePaths(int m, int n) { //本题解法为动态规划 //状态转移方程f[i][j] = f[i-1][j] + f[i][j-1]; //f[i][j]的值即为路径的数量 int[][] f = new int[m][n]; for(int i = 0; i < m ; i++)//第一列赋值为1 f[i][0] = 1; for(int i = 0; i < n; i++)//第一行赋值为1 f[0][i] = 1; for(int i = 1; i < m ; i++) for(int j = 1; j < n ; j++){ f[i][j] = f[i-1][j] + f[i][j-1]; //System.out.println("f[" + i +"][" + j+ "]" + f[i][j]); } return f[m-1][n-1];//返回结果值 } }
时间: 2024-10-12 17:13:22