本文记录x264的x264_slice_write()函数中调用的x264_fdec_filter_row()的源代码。x264_fdec_filter_row()对应着x264中的滤波模块。滤波模块主要完成了下面3个方面的功能:
(1)环路滤波(去块效应滤波)
(2)半像素内插
(3)视频质量指标PSNR和SSIM的计算
本文分别记录上述3个方面的源代码。
函数调用关系图
滤波(Filter)部分的源代码在整个x264中的位置如下图所示。
滤波(Filter)部分的函数调用关系如下图所示。
从图中可以看出,滤波模块对应的x264_fdec_filter_row()调用了如下函数:
x264_frame_deblock_row():去块效应滤波器。
x264_frame_filter():半像素插值。
x264_pixel_ssd_wxh():PSNR计算。
x264_pixel_ssim_wxh():SSIM计算。
x264_slice_write()
x264_slice_write()是x264项目的核心,它完成了编码了一个Slice的工作。有关该函数的分析可以参考文章《x264源代码简单分析:x264_slice_write()》。本文分析其调用的x264_fdec_filter_row()函数。
x264_fdec_filter_row()
x264_fdec_filter_row()用于对一行宏块进行滤波。该函数的定义位于encoder\encoder.c,如下所示。
/**************************************************************************** * 滤波-去块效应滤波、半像素插值、SSIM/PSNR计算等 * 一次处理一行宏块 * * 注释和处理:雷霄骅 * http://blog.csdn.net/leixiaohua1020 * [email protected] ****************************************************************************/ static void x264_fdec_filter_row( x264_t *h, int mb_y, int pass ) { /* mb_y is the mb to be encoded next, not the mb to be filtered here */ int b_hpel = h->fdec->b_kept_as_ref; int b_deblock = h->sh.i_disable_deblocking_filter_idc != 1; int b_end = mb_y == h->i_threadslice_end; int b_measure_quality = 1; int min_y = mb_y - (1 << SLICE_MBAFF); int b_start = min_y == h->i_threadslice_start; /* Even in interlaced mode, deblocking never modifies more than 4 pixels * above each MB, as bS=4 doesn‘t happen for the top of interlaced mbpairs. */ int minpix_y = min_y*16 - 4 * !b_start; int maxpix_y = mb_y*16 - 4 * !b_end; b_deblock &= b_hpel || h->param.b_full_recon || h->param.psz_dump_yuv; if( h->param.b_sliced_threads ) { switch( pass ) { /* During encode: only do deblock if asked for */ default: case 0: b_deblock &= h->param.b_full_recon; b_hpel = 0; break; /* During post-encode pass: do deblock if not done yet, do hpel for all * rows except those between slices. */ case 1: b_deblock &= !h->param.b_full_recon; b_hpel &= !(b_start && min_y > 0); b_measure_quality = 0; break; /* Final pass: do the rows between slices in sequence. */ case 2: b_deblock = 0; b_measure_quality = 0; break; } } if( mb_y & SLICE_MBAFF ) return; if( min_y < h->i_threadslice_start ) return; //去块效应滤波 if( b_deblock ) for( int y = min_y; y < mb_y; y += (1 << SLICE_MBAFF) ) x264_frame_deblock_row( h, y );//处理一行 /* FIXME: Prediction requires different borders for interlaced/progressive mc, * but the actual image data is equivalent. For now, maintain this * consistency by copying deblocked pixels between planes. */ if( PARAM_INTERLACED && (!h->param.b_sliced_threads || pass == 1) ) for( int p = 0; p < h->fdec->i_plane; p++ ) for( int i = minpix_y>>(CHROMA_V_SHIFT && p); i < maxpix_y>>(CHROMA_V_SHIFT && p); i++ ) memcpy( h->fdec->plane_fld[p] + i*h->fdec->i_stride[p], h->fdec->plane[p] + i*h->fdec->i_stride[p], h->mb.i_mb_width*16*sizeof(pixel) ); if( h->fdec->b_kept_as_ref && (!h->param.b_sliced_threads || pass == 1) ) x264_frame_expand_border( h, h->fdec, min_y ); //半像素内插 if( b_hpel ) { int end = mb_y == h->mb.i_mb_height; /* Can‘t do hpel until the previous slice is done encoding. */ if( h->param.analyse.i_subpel_refine ) { //半像素内插 x264_frame_filter( h, h->fdec, min_y, end ); x264_frame_expand_border_filtered( h, h->fdec, min_y, end ); } } if( SLICE_MBAFF && pass == 0 ) for( int i = 0; i < 3; i++ ) { XCHG( pixel *, h->intra_border_backup[0][i], h->intra_border_backup[3][i] ); XCHG( pixel *, h->intra_border_backup[1][i], h->intra_border_backup[4][i] ); } if( h->i_thread_frames > 1 && h->fdec->b_kept_as_ref ) x264_frame_cond_broadcast( h->fdec, mb_y*16 + (b_end ? 10000 : -(X264_THREAD_HEIGHT << SLICE_MBAFF)) ); //计算编码的质量 if( b_measure_quality ) { maxpix_y = X264_MIN( maxpix_y, h->param.i_height ); //如果需要打印输出PSNR if( h->param.analyse.b_psnr ) { //实际上是计算SSD //输出的时候调用x264_psnr()换算SSD为PSNR /** * 计算PSNR的过程 * * MSE = SSD*1/(w*h) * PSNR= 10*log10(MAX^2/MSE) * * 其中MAX指的是图像的灰度级,对于8bit来说就是2^8-1=255 */ for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) h->stat.frame.i_ssd[p] += x264_pixel_ssd_wxh( &h->pixf, h->fdec->plane[p] + minpix_y * h->fdec->i_stride[p], h->fdec->i_stride[p],//重建帧 h->fenc->plane[p] + minpix_y * h->fenc->i_stride[p], h->fenc->i_stride[p],//编码帧 h->param.i_width, maxpix_y-minpix_y ); if( !CHROMA444 ) { uint64_t ssd_u, ssd_v; int v_shift = CHROMA_V_SHIFT; x264_pixel_ssd_nv12( &h->pixf, h->fdec->plane[1] + (minpix_y>>v_shift) * h->fdec->i_stride[1], h->fdec->i_stride[1], h->fenc->plane[1] + (minpix_y>>v_shift) * h->fenc->i_stride[1], h->fenc->i_stride[1], h->param.i_width>>1, (maxpix_y-minpix_y)>>v_shift, &ssd_u, &ssd_v ); h->stat.frame.i_ssd[1] += ssd_u; h->stat.frame.i_ssd[2] += ssd_v; } } //如果需要打印输出SSIM if( h->param.analyse.b_ssim ) { int ssim_cnt; x264_emms(); /* offset by 2 pixels to avoid alignment of ssim blocks with dct blocks, * and overlap by 4 */ minpix_y += b_start ? 2 : -6; //计算SSIM h->stat.frame.f_ssim += x264_pixel_ssim_wxh( &h->pixf, h->fdec->plane[0] + 2+minpix_y*h->fdec->i_stride[0], h->fdec->i_stride[0],//重建帧 h->fenc->plane[0] + 2+minpix_y*h->fenc->i_stride[0], h->fenc->i_stride[0],//编码帧 h->param.i_width-2, maxpix_y-minpix_y, h->scratch_buffer, &ssim_cnt ); h->stat.frame.i_ssim_cnt += ssim_cnt; } } }
从源代码可以看出,x264_fdec_filter_row()完成了三步工作:
(1)环路滤波(去块效应滤波)。通过调用x264_frame_deblock_row()实现。
(2)半像素内插。通过调用x264_frame_filter()实现。
(3)视频质量SSIM和PSNR计算。PSNR在这里只计算了SSD,通过调用x264_pixel_ssd_wxh()实现;SSIM的计算则是通过x264_pixel_ssim_wxh()实现。
x264_frame_deblock_row()
x264_frame_deblock_row()用于进行环路滤波(去块效应滤波)。该函数的定义位于common\deblock.c,如下所示。
//去块效应滤波 void x264_frame_deblock_row( x264_t *h, int mb_y ) { int b_interlaced = SLICE_MBAFF; int a = h->sh.i_alpha_c0_offset - QP_BD_OFFSET; int b = h->sh.i_beta_offset - QP_BD_OFFSET; int qp_thresh = 15 - X264_MIN( a, b ) - X264_MAX( 0, h->pps->i_chroma_qp_index_offset ); int stridey = h->fdec->i_stride[0]; int strideuv = h->fdec->i_stride[1]; int chroma444 = CHROMA444; int chroma_height = 16 >> CHROMA_V_SHIFT; intptr_t uvdiff = chroma444 ? h->fdec->plane[2] - h->fdec->plane[1] : 1; for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x += (~b_interlaced | mb_y)&1, mb_y ^= b_interlaced ) { x264_prefetch_fenc( h, h->fdec, mb_x, mb_y ); x264_macroblock_cache_load_neighbours_deblock( h, mb_x, mb_y ); int mb_xy = h->mb.i_mb_xy; int transform_8x8 = h->mb.mb_transform_size[mb_xy]; int intra_cur = IS_INTRA( h->mb.type[mb_xy] ); uint8_t (*bs)[8][4] = h->deblock_strength[mb_y&1][h->param.b_sliced_threads?mb_xy:mb_x]; //找到像素数据(宏块的大小是16x16) pixel *pixy = h->fdec->plane[0] + 16*mb_y*stridey + 16*mb_x; pixel *pixuv = h->fdec->plane[1] + chroma_height*mb_y*strideuv + 16*mb_x; if( mb_y & MB_INTERLACED ) { pixy -= 15*stridey; pixuv -= (chroma_height-1)*strideuv; } int stride2y = stridey << MB_INTERLACED; int stride2uv = strideuv << MB_INTERLACED; //QP,用于计算环路滤波的门限值alpha和beta int qp = h->mb.qp[mb_xy]; int qpc = h->chroma_qp_table[qp]; int first_edge_only = (h->mb.partition[mb_xy] == D_16x16 && !h->mb.cbp[mb_xy] && !intra_cur) || qp <= qp_thresh; /* * 滤波顺序如下所示(大方框代表16x16块) * * +--4-+--4-+--4-+--4-+ * 0 1 2 3 | * +--5-+--5-+--5-+--5-+ * 0 1 2 3 | * +--6-+--6-+--6-+--6-+ * 0 1 2 3 | * +--7-+--7-+--7-+--7-+ * 0 1 2 3 | * +----+----+----+----+ * */ //一个比较长的宏,用于进行环路滤波 //根据不同的情况传递不同的参数 //几个参数的含义: //intra: //为“_intra”的时候: //其中的“deblock_edge##intra()”展开为函数deblock_edge_intra() //其中的“h->loopf.deblock_luma##intra[dir]”展开为强滤波汇编函数h->loopf.deblock_luma_intra[dir]() //为“”(空),其中的“deblock_edge##intra()”展开为函数deblock_edge() //其中的“h->loopf.deblock_luma##intra[dir]”展开为普通滤波汇编函数h->loopf.deblock_luma[dir]() //dir: //决定了滤波的方向:0为水平滤波器(垂直边界),1为垂直滤波器(水平边界) #define FILTER( intra, dir, edge, qp, chroma_qp ) do { if( !(edge & 1) || !transform_8x8 ) { deblock_edge##intra( h, pixy + 4*edge*(dir?stride2y:1), stride2y, bs[dir][edge], qp, a, b, 0, h->loopf.deblock_luma##intra[dir] ); if( CHROMA_FORMAT == CHROMA_444 ) { deblock_edge##intra( h, pixuv + 4*edge*(dir?stride2uv:1), stride2uv, bs[dir][edge], chroma_qp, a, b, 0, h->loopf.deblock_luma##intra[dir] ); deblock_edge##intra( h, pixuv + uvdiff + 4*edge*(dir?stride2uv:1), stride2uv, bs[dir][edge], chroma_qp, a, b, 0, h->loopf.deblock_luma##intra[dir] ); } else if( CHROMA_FORMAT == CHROMA_420 && !(edge & 1) ) { deblock_edge##intra( h, pixuv + edge*(dir?2*stride2uv:4), stride2uv, bs[dir][edge], chroma_qp, a, b, 1, h->loopf.deblock_chroma##intra[dir] ); } } if( CHROMA_FORMAT == CHROMA_422 && (dir || !(edge & 1)) ) { deblock_edge##intra( h, pixuv + edge*(dir?4*stride2uv:4), stride2uv, bs[dir][edge], chroma_qp, a, b, 1, h->loopf.deblock_chroma##intra[dir] ); } } while(0) if( h->mb.i_neighbour & MB_LEFT ) { if( b_interlaced && h->mb.field[h->mb.i_mb_left_xy[0]] != MB_INTERLACED ) { //隔行的 int luma_qp[2]; int chroma_qp[2]; int left_qp[2]; x264_deblock_inter_t luma_deblock = h->loopf.deblock_luma_mbaff; x264_deblock_inter_t chroma_deblock = h->loopf.deblock_chroma_mbaff; x264_deblock_intra_t luma_intra_deblock = h->loopf.deblock_luma_intra_mbaff; x264_deblock_intra_t chroma_intra_deblock = h->loopf.deblock_chroma_intra_mbaff; int c = chroma444 ? 0 : 1; left_qp[0] = h->mb.qp[h->mb.i_mb_left_xy[0]]; luma_qp[0] = (qp + left_qp[0] + 1) >> 1; chroma_qp[0] = (qpc + h->chroma_qp_table[left_qp[0]] + 1) >> 1; if( intra_cur || IS_INTRA( h->mb.type[h->mb.i_mb_left_xy[0]] ) ) { deblock_edge_intra( h, pixy, 2*stridey, bs[0][0], luma_qp[0], a, b, 0, luma_intra_deblock ); deblock_edge_intra( h, pixuv, 2*strideuv, bs[0][0], chroma_qp[0], a, b, c, chroma_intra_deblock ); if( chroma444 ) deblock_edge_intra( h, pixuv + uvdiff, 2*strideuv, bs[0][0], chroma_qp[0], a, b, c, chroma_intra_deblock ); } else { deblock_edge( h, pixy, 2*stridey, bs[0][0], luma_qp[0], a, b, 0, luma_deblock ); deblock_edge( h, pixuv, 2*strideuv, bs[0][0], chroma_qp[0], a, b, c, chroma_deblock ); if( chroma444 ) deblock_edge( h, pixuv + uvdiff, 2*strideuv, bs[0][0], chroma_qp[0], a, b, c, chroma_deblock ); } int offy = MB_INTERLACED ? 4 : 0; int offuv = MB_INTERLACED ? 4-CHROMA_V_SHIFT : 0; left_qp[1] = h->mb.qp[h->mb.i_mb_left_xy[1]]; luma_qp[1] = (qp + left_qp[1] + 1) >> 1; chroma_qp[1] = (qpc + h->chroma_qp_table[left_qp[1]] + 1) >> 1; if( intra_cur || IS_INTRA( h->mb.type[h->mb.i_mb_left_xy[1]] ) ) { deblock_edge_intra( h, pixy + (stridey<<offy), 2*stridey, bs[0][4], luma_qp[1], a, b, 0, luma_intra_deblock ); deblock_edge_intra( h, pixuv + (strideuv<<offuv), 2*strideuv, bs[0][4], chroma_qp[1], a, b, c, chroma_intra_deblock ); if( chroma444 ) deblock_edge_intra( h, pixuv + uvdiff + (strideuv<<offuv), 2*strideuv, bs[0][4], chroma_qp[1], a, b, c, chroma_intra_deblock ); } else { deblock_edge( h, pixy + (stridey<<offy), 2*stridey, bs[0][4], luma_qp[1], a, b, 0, luma_deblock ); deblock_edge( h, pixuv + (strideuv<<offuv), 2*strideuv, bs[0][4], chroma_qp[1], a, b, c, chroma_deblock ); if( chroma444 ) deblock_edge( h, pixuv + uvdiff + (strideuv<<offuv), 2*strideuv, bs[0][4], chroma_qp[1], a, b, c, chroma_deblock ); } } else { //逐行的 //左边宏块的qp int qpl = h->mb.qp[h->mb.i_mb_xy-1]; int qp_left = (qp + qpl + 1) >> 1; int qpc_left = (qpc + h->chroma_qp_table[qpl] + 1) >> 1; //Intra宏块左边宏块的qp int intra_left = IS_INTRA( h->mb.type[h->mb.i_mb_xy-1] ); int intra_deblock = intra_cur || intra_left; /* Any MB that was coded, or that analysis decided to skip, has quality commensurate with its QP. * But if deblocking affects neighboring MBs that were force-skipped, blur might accumulate there. * So reset their effective QP to max, to indicate that lack of guarantee. */ if( h->fdec->mb_info && M32( bs[0][0] ) ) { #define RESET_EFFECTIVE_QP(xy) h->fdec->effective_qp[xy] |= 0xff * !!(h->fdec->mb_info[xy] & X264_MBINFO_CONSTANT); RESET_EFFECTIVE_QP(mb_xy); RESET_EFFECTIVE_QP(h->mb.i_mb_left_xy[0]); } if( intra_deblock ) FILTER( _intra, 0, 0, qp_left, qpc_left );//【0】强滤波,水平滤波器(垂直边界) else FILTER( , 0, 0, qp_left, qpc_left );//【0】普通滤波,水平滤波器(垂直边界) } } if( !first_edge_only ) { //普通滤波,水平滤波器(垂直边界) FILTER( , 0, 1, qp, qpc );//【1】 FILTER( , 0, 2, qp, qpc );//【2】 FILTER( , 0, 3, qp, qpc );//【3】 } if( h->mb.i_neighbour & MB_TOP ) { if( b_interlaced && !(mb_y&1) && !MB_INTERLACED && h->mb.field[h->mb.i_mb_top_xy] ) { int mbn_xy = mb_xy - 2 * h->mb.i_mb_stride; for( int j = 0; j < 2; j++, mbn_xy += h->mb.i_mb_stride ) { int qpt = h->mb.qp[mbn_xy]; int qp_top = (qp + qpt + 1) >> 1; int qpc_top = (qpc + h->chroma_qp_table[qpt] + 1) >> 1; int intra_top = IS_INTRA( h->mb.type[mbn_xy] ); if( intra_cur || intra_top ) M32( bs[1][4*j] ) = 0x03030303; // deblock the first horizontal edge of the even rows, then the first horizontal edge of the odd rows deblock_edge( h, pixy + j*stridey, 2* stridey, bs[1][4*j], qp_top, a, b, 0, h->loopf.deblock_luma[1] ); if( chroma444 ) { deblock_edge( h, pixuv + j*strideuv, 2*strideuv, bs[1][4*j], qpc_top, a, b, 0, h->loopf.deblock_luma[1] ); deblock_edge( h, pixuv + uvdiff + j*strideuv, 2*strideuv, bs[1][4*j], qpc_top, a, b, 0, h->loopf.deblock_luma[1] ); } else deblock_edge( h, pixuv + j*strideuv, 2*strideuv, bs[1][4*j], qpc_top, a, b, 1, h->loopf.deblock_chroma[1] ); } } else { int qpt = h->mb.qp[h->mb.i_mb_top_xy]; int qp_top = (qp + qpt + 1) >> 1; int qpc_top = (qpc + h->chroma_qp_table[qpt] + 1) >> 1; int intra_top = IS_INTRA( h->mb.type[h->mb.i_mb_top_xy] ); int intra_deblock = intra_cur || intra_top; /* This edge has been modified, reset effective qp to max. */ if( h->fdec->mb_info && M32( bs[1][0] ) ) { RESET_EFFECTIVE_QP(mb_xy); RESET_EFFECTIVE_QP(h->mb.i_mb_top_xy); } if( (!b_interlaced || (!MB_INTERLACED && !h->mb.field[h->mb.i_mb_top_xy])) && intra_deblock ) { FILTER( _intra, 1, 0, qp_top, qpc_top );//【4】普通滤波,垂直滤波器(水平边界) } else { if( intra_deblock ) M32( bs[1][0] ) = 0x03030303; FILTER( , 1, 0, qp_top, qpc_top );//【4】普通滤波,垂直滤波器(水平边界) } } } if( !first_edge_only ) { //普通滤波,垂直滤波器(水平边界) FILTER( , 1, 1, qp, qpc );//【5】 FILTER( , 1, 2, qp, qpc );//【6】 FILTER( , 1, 3, qp, qpc );//【7】 } #undef FILTER } }
从源代码可以看出,x264_frame_deblock_row()中有一个很长的宏定义“FILTER()”定义了函数调用的方式。FILTER( intra, dir, edge, qp, chroma_qp )中:
“intra”指定了是普通滤波(Bs=1,2,3)还是强滤波(Bs=4);
“dir”指定了滤波器的方向。0为水平滤波器(垂直边界),1为垂直滤波器(水平边界);“edge”指定了边界的位置。“0”,“1”,“2”,“3”分别代表了水平(或者垂直)的4条边界;
滤波的主干代码如下所示。
FILTER( _intra, 0, 0, qp_left, qpc_left );//【0】强滤波,水平滤波器(垂直边界) //普通滤波,水平滤波器(垂直边界) FILTER( , 0, 1, qp, qpc );//【1】 FILTER( , 0, 2, qp, qpc );//【2】 FILTER( , 0, 3, qp, qpc );//【3】 FILTER( _intra, 1, 0, qp_top, qpc_top );//【4】普通滤波,垂直滤波器(水平边界) //普通滤波,垂直滤波器(水平边界) FILTER( , 1, 1, qp, qpc );//【5】 FILTER( , 1, 2, qp, qpc );//【6】 FILTER( , 1, 3, qp, qpc );//【7】
上述代码滤波的顺序如下图所示。图中蓝色边缘的边界是强滤波,其他边界是普通滤波。
下面分别看一下两个宏“FILTER( _intra, 0, 0, qp_left, qpc_left )”和“FILTER( , 0, 1, qp, qpc )”展开后的代码。
FILTER( _intra, 0, 0, qp_left, qpc_left )
FILTER( _intra, 0, 0, qp_left, qpc_left )用于对上文图中“0”号垂直边界进行强滤波(Bs=4)。该宏的展开结果如下所示。
do { if( !(0 & 1) || !transform_8x8 ) { deblock_edge_intra( h, pixy + 4*0*(0?stride2y:1), stride2y, bs[0][0], qp_left, a, b, 0, h->loopf.deblock_luma_intra[0] ); if( h->sps->i_chroma_format_idc == CHROMA_444 ) { deblock_edge_intra( h, pixuv + 4*0*(0?stride2uv:1), stride2uv, bs[0][0], qpc_left, a, b, 0, h->loopf.deblock_luma_intra[0] ); deblock_edge_intra( h, pixuv + uvdiff + 4*0*(0?stride2uv:1), stride2uv, bs[0][0], qpc_left, a, b, 0, h->loopf.deblock_luma_intra[0] ); } else if( h->sps->i_chroma_format_idc == CHROMA_420 && !(0 & 1) ) { deblock_edge_intra( h, pixuv + 0*(0?2*stride2uv:4), stride2uv, bs[0][0], qpc_left, a, b, 1, h->loopf.deblock_chroma_intra[0] ); } } if( h->sps->i_chroma_format_idc == CHROMA_422 && (0 || !(0 & 1)) ) { deblock_edge_intra( h, pixuv + 0*(0?4*stride2uv:4), stride2uv, bs[0][0], qpc_left, a, b, 1, h->loopf.deblock_chroma_intra[0] ); } } while(0)
从代码中可以看出,FILTER( _intra, 0, 0, qp_left, qpc_left )调用了deblock_edge_intra()完成了强滤波。该函数的最后一个参数指定了环路滤波的汇编函数,在这里是h->loopf.deblock_luma_intra[0]()。有关h->loopf.deblock_luma_intra[0]()的代码在后面进行分析。
deblock_edge_intra()
deblock_edge_intra()通过调用相应的滤波函数完成强滤波(Bs=4)。该函数的定义位于common\deblock.c,如下所示。
//强滤波(Bs取值为4) static ALWAYS_INLINE void deblock_edge_intra( x264_t *h, pixel *pix, intptr_t i_stride, uint8_t bS[4], int i_qp, int a, int b, int b_chroma, x264_deblock_intra_t pf_intra ) { int index_a = i_qp + a; int index_b = i_qp + b; //根据QP,通过查表的方法获得是否滤波的门限值alpha和beta //alpha为边界两边2点的门限值 //beta为边界一边最靠近边界的2点的门限值 //总体说来,QP越大,alpha和beta越大,越有可能滤波 int alpha = alpha_table(index_a) << (BIT_DEPTH-8); int beta = beta_table(index_b) << (BIT_DEPTH-8); //alpha或者beta有一个门限为0的时候,根本不用滤波 if( !alpha || !beta ) return; //滤波函数,通过传参而来 pf_intra( pix, i_stride, alpha, beta ); }
从源代码可以看出,deblock_edge_intra()首先计算滤波的门限值alpha和beta,然后调用通过参数传过来的pf_intra()汇编函数完成滤波。
FILTER( , 0, 1, qp, qpc )
FILTER( , 0, 1, qp, qpc )用于对上文图中“1”号垂直边界进行普通滤波(Bs=1,2,3)。该宏的展开结果如下所示。
do { if( !(1 & 1) || !transform_8x8 ) { deblock_edge( h, pixy + 4*1*(0?stride2y:1), stride2y, bs[0][1], qp, a, b, 0, h->loopf.deblock_luma[0] ); if( h->sps->i_chroma_format_idc == CHROMA_444 ) { deblock_edge( h, pixuv + 4*1*(0?stride2uv:1), stride2uv, bs[0][1], qpc, a, b, 0, h->loopf.deblock_luma[0] ); deblock_edge( h, pixuv + uvdiff + 4*1*(0?stride2uv:1), stride2uv, bs[0][1], qpc, a, b, 0, h->loopf.deblock_luma[0] ); } else if( h->sps->i_chroma_format_idc == CHROMA_420 && !(1 & 1) ) { deblock_edge( h, pixuv + 1*(0?2*stride2uv:4), stride2uv, bs[0][1], qpc, a, b, 1, h->loopf.deblock_chroma[0] ); } } if( h->sps->i_chroma_format_idc == CHROMA_422 && (0 || !(1 & 1)) ) { deblock_edge( h, pixuv + 1*(0?4*stride2uv:4), stride2uv, bs[0][1], qpc, a, b, 1, h->loopf.deblock_chroma[0] ); } } while(0)
从代码中可以看出,FILTER( , 0, 1, qp, qpc )调用了deblock_edge()完成了普通滤波(Bs=1,2,3)。该函数的最后一个参数指定了环路滤波的汇编函数,在这里是h->loopf.deblock_luma[0]()。有关h->loopf.deblock_luma[0]()的代码在后面进行分析。
deblock_edge()
deblock_edge()通过调用相应的滤波函数完成强滤波(Bs=4)。该函数的定义位于common\deblock.c,如下所示。
//普通滤波(Bs取值1-3) static ALWAYS_INLINE void deblock_edge( x264_t *h, pixel *pix, intptr_t i_stride, uint8_t bS[4], int i_qp, int a, int b, int b_chroma, x264_deblock_inter_t pf_inter ) { int index_a = i_qp + a; int index_b = i_qp + b; //根据QP,通过查表的方法获得是否滤波的门限值alpha和beta //alpha为边界两边2点的门限值 //beta为边界一边最靠近边界的2点的门限值 //总体说来,QP越大,alpha和beta越大,越有可能滤波 int alpha = alpha_table(index_a) << (BIT_DEPTH-8); int beta = beta_table(index_b) << (BIT_DEPTH-8); int8_t tc[4]; //alpha或者beta有一个门限为0的时候,根本不用滤波 if( !M32(bS) || !alpha || !beta ) return; tc[0] = (tc0_table(index_a)[bS[0]] << (BIT_DEPTH-8)) + b_chroma; tc[1] = (tc0_table(index_a)[bS[1]] << (BIT_DEPTH-8)) + b_chroma; tc[2] = (tc0_table(index_a)[bS[2]] << (BIT_DEPTH-8)) + b_chroma; tc[3] = (tc0_table(index_a)[bS[3]] << (BIT_DEPTH-8)) + b_chroma; //滤波函数,通过传参而来 pf_inter( pix, i_stride, alpha, beta, tc ); }
从源代码可以看出,deblock_edge()首先计算滤波的门限值alpha和beta,然后计算tc[]的取值,最后调用通过参数传过来的pf_inter()汇编函数完成滤波。
下文开始分析环路滤波模块调用的汇编函数。
环路滤波小知识
简单记录一下环路滤波的知识。X264的重建帧(通过解码得到)一般情况下会出现方块效应。产生这种效应的原因主要有两个:
(1)DCT变换后的量化造成误差(主要原因)
(2)运动补偿
正是由于这种块效应的存在,才需要添加环路滤波器调整相邻的“块”边缘上的像素值以减轻这种视觉上的不连续感。下面一张图显示了环路滤波的效果。图中左边的图没有使用环路滤波,而右边的图使用了环路滤波。
环路滤波分类
环路滤波器根据滤波的强度可以分为两种:
(1)普通滤波器。针对边界的Bs(边界强度)为1、2、3的滤波器。此时环路滤波涉及到方块边界周围的6个点(边界两边各3个点):p2,p1,p0,q0,q1,q2。需要处理4个点(边界两边各2个点,只以p点为例):
p0’ = p0 + (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3
p1’ = ( p2 + ( ( p0 + q0 + 1 ) >> 1) – 2p1 ) >> 1
(2)强滤波器。针对边界的Bs(边界强度)为4的滤波器。此时环路滤波涉及到方块边界周围的8个点(边界两边各4个点):p3,p2,p1,p0,q0,q1,q2,q3。需要处理6个点(边界两边各3个点,只以p点为例):
p0’ = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3
p1’ = ( p2 + p1 + p0 + q0 + 2 ) >> 2
p2’ = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3
其中上文中提到的边界强度Bs的判定方式如下。
条件(针对两边的图像块) |
Bs |
有一个块为帧内预测 + 边界为宏块边界 |
4 |
有一个块为帧内预测 |
3 |
有一个块对残差编码 |
2 |
运动矢量差不小于1像素 |
1 |
运动补偿参考帧不同 |
1 |
其它 |
0 |
总体说来,与帧内预测相关的图像块(帧内预测块)的边界强度比较大,取值为3或者4;与运动补偿相关的图像块(帧间预测块)的边界强度比较小,取值为1。
环路滤波的门限
并不是所有的块的边界处都需要环路滤波。例如画面中物体的边界正好和块的边界重合的话,就不能进行滤波,否则会使画面中物体的边界变模糊。因此需要区别开物体边界和块效应边界。一般情况下,物体边界两边的像素值差别很大,而块效应边界两边像素值差别比较小。《H.264标准》以这个特点定义了2个变量alpha和beta来判决边界是否需要进行环路滤波。只有满足下面三个条件的时候才能进行环路滤波:
| p0 - q0 | < alpha
| p1 – p0 | < beta
| q1 - q0 | < beta
简而言之,就是边界两边的两个点的像素值不能太大,即不能超过alpha;边界一边的前两个点之间的像素值也不能太大,即不能超过beta。其中alpha和beta是根据量化参数QP推算出来(具体方法不再记录)。总体说来QP越大,alpha和beta的值也越大,也就越容易触发环路滤波。由于QP越大表明压缩的程度越大,所以也可以得知高压缩比的情况下更需要进行环路滤波。
x264_deblock_init()
x264_deblock_init()用于初始化去块效应滤波器相关的汇编函数。该函数的定义位于common\deblock.c,如下所示。
//去块效应滤波 void x264_deblock_init( int cpu, x264_deblock_function_t *pf, int b_mbaff ) { //注意:标记“v”的垂直滤波器是处理水平边界用的 //亮度-普通滤波器-边界强度Bs=1,2,3 pf->deblock_luma[1] = deblock_v_luma_c; pf->deblock_luma[0] = deblock_h_luma_c; //色度的 pf->deblock_chroma[1] = deblock_v_chroma_c; pf->deblock_h_chroma_420 = deblock_h_chroma_c; pf->deblock_h_chroma_422 = deblock_h_chroma_422_c; //亮度-强滤波器-边界强度Bs=4 pf->deblock_luma_intra[1] = deblock_v_luma_intra_c; pf->deblock_luma_intra[0] = deblock_h_luma_intra_c; pf->deblock_chroma_intra[1] = deblock_v_chroma_intra_c; pf->deblock_h_chroma_420_intra = deblock_h_chroma_intra_c; pf->deblock_h_chroma_422_intra = deblock_h_chroma_422_intra_c; pf->deblock_luma_mbaff = deblock_h_luma_mbaff_c; pf->deblock_chroma_420_mbaff = deblock_h_chroma_mbaff_c; pf->deblock_luma_intra_mbaff = deblock_h_luma_intra_mbaff_c; pf->deblock_chroma_420_intra_mbaff = deblock_h_chroma_intra_mbaff_c; pf->deblock_strength = deblock_strength_c; #if HAVE_MMX if( cpu&X264_CPU_MMX2 ) { #if ARCH_X86 pf->deblock_luma[1] = x264_deblock_v_luma_mmx2; pf->deblock_luma[0] = x264_deblock_h_luma_mmx2; pf->deblock_chroma[1] = x264_deblock_v_chroma_mmx2; pf->deblock_h_chroma_420 = x264_deblock_h_chroma_mmx2; pf->deblock_chroma_420_mbaff = x264_deblock_h_chroma_mbaff_mmx2; pf->deblock_h_chroma_422 = x264_deblock_h_chroma_422_mmx2; pf->deblock_h_chroma_422_intra = x264_deblock_h_chroma_422_intra_mmx2; pf->deblock_luma_intra[1] = x264_deblock_v_luma_intra_mmx2; pf->deblock_luma_intra[0] = x264_deblock_h_luma_intra_mmx2; pf->deblock_chroma_intra[1] = x264_deblock_v_chroma_intra_mmx2; pf->deblock_h_chroma_420_intra = x264_deblock_h_chroma_intra_mmx2; pf->deblock_chroma_420_intra_mbaff = x264_deblock_h_chroma_intra_mbaff_mmx2; #endif //此处省略大量的X86、ARM等平台的汇编函数初始化代码 }
从源代码可以看出,x264_deblock_init()中初始化了一系列环路滤波函数。这些函数名称的规则如下:
(1)包含“v”的是垂直滤波器,用于处理水平边界;包含“h”的是水平滤波器,用于处理垂直边界。
(2)包含“luma”的是亮度滤波器,包含“chroma”的是色度滤波器。
(3)包含“intra”的是处理边界强度Bs为4的强滤波器,不包含“intra”的是普通滤波器。
x264_deblock_init()的输入参数x264_deblock_function_t是一个结构体,其中包含了环路滤波器相关的函数指针。x264_deblock_function_t的定义如下所示。
typedef struct { x264_deblock_inter_t deblock_luma[2]; x264_deblock_inter_t deblock_chroma[2]; x264_deblock_inter_t deblock_h_chroma_420; x264_deblock_inter_t deblock_h_chroma_422; x264_deblock_intra_t deblock_luma_intra[2]; x264_deblock_intra_t deblock_chroma_intra[2]; x264_deblock_intra_t deblock_h_chroma_420_intra; x264_deblock_intra_t deblock_h_chroma_422_intra; x264_deblock_inter_t deblock_luma_mbaff; x264_deblock_inter_t deblock_chroma_mbaff; x264_deblock_inter_t deblock_chroma_420_mbaff; x264_deblock_inter_t deblock_chroma_422_mbaff; x264_deblock_intra_t deblock_luma_intra_mbaff; x264_deblock_intra_t deblock_chroma_intra_mbaff; x264_deblock_intra_t deblock_chroma_420_intra_mbaff; x264_deblock_intra_t deblock_chroma_422_intra_mbaff; void (*deblock_strength) ( uint8_t nnz[X264_SCAN8_SIZE], int8_t ref[2][X264_SCAN8_LUMA_SIZE], int16_t mv[2][X264_SCAN8_LUMA_SIZE][2], uint8_t bs[2][8][4], int mvy_limit, int bframe ); } x264_deblock_function_t;
x264_deblock_init()的工作就是对x264_deblock_function_t中的函数指针进行赋值。可以看出x264_deblock_function_t中很多的元素是一个包含2个元素的数组,例如deblock_luma[2],deblock_luma_intra[2]等。这些数组中的元素[0]一般是水平滤波器,而元素[1]是垂直滤波器。下面记录几个最有代表性的滤波函数:普通滤波函数deblock_v_luma_c()和deblock_h_luma_c(),以及强滤波函数deblock_v_luma_intra_c()和deblock_h_luma_intra_c()。
普通滤波函数(Bs=1,2,3)
deblock_v_luma_c()
deblock_v_luma_c()是一个普通强度的垂直滤波器,用于处理边界强度Bs为1,2,3的水平边界。该函数的定义位于common\deblock.c,如下所示。
//去块效应滤波-普通滤波,Bs为1,2,3 //垂直(Vertical)滤波器 // 边界 // x // x // 边界---------- // x // x // // static void deblock_v_luma_c( pixel *pix, intptr_t stride, int alpha, int beta, int8_t *tc0 ) { //xstride=stride(用于选择滤波的像素) //ystride=1 deblock_luma_c( pix, stride, 1, alpha, beta, tc0 ); }
可以看出deblock_v_luma_c()调用了另一个函数deblock_luma_c()。需要注意deblock_luma_c()是一个水平滤波器和垂直滤波器都会调用的“通用”滤波器函数。在这里传递给deblock_luma_c()第二个参数xstride的值为stride,第三个参数ystride的值为1。
deblock_luma_c()
deblock_luma_c()是一个通用的滤波器函数,定义如下所示。
//去块效应滤波-普通滤波,Bs为1,2,3 static inline void deblock_luma_c( pixel *pix, intptr_t xstride, intptr_t ystride, int alpha, int beta, int8_t *tc0 ) { for( int i = 0; i < 4; i++ ) { if( tc0[i] < 0 ) { pix += 4*ystride; continue; } //滤4个像素 for( int d = 0; d < 4; d++, pix += ystride ) deblock_edge_luma_c( pix, xstride, alpha, beta, tc0[i] ); } }
从源代码中可以看出,具体的滤波在deblock_edge_luma_c()中完成。处理完一个像素后,会继续处理与当前像素距离为ystride的像素。
deblock_edge_luma_c()
deblock_edge_luma_c()用于完成一个点的滤波工作。该函数的定义如下所示。
/* From ffmpeg */ //去块效应滤波-普通滤波,Bs为1,2,3 //从FFmpeg复制过来的? static ALWAYS_INLINE void deblock_edge_luma_c( pixel *pix, intptr_t xstride, int alpha, int beta, int8_t tc0 ) { //p和q //如果xstride=stride,ystride=1 //就是处理纵向的6个像素 //对应的是方块的横向边界的滤波,即如下所示: // p2 // p1 // p0 //=====图像边界===== // q0 // q1 // q2 // //如果xstride=1,ystride=stride //就是处理纵向的6个像素 //对应的是方块的横向边界的滤波,即如下所示: // || // p2 p1 p0 || q0 q1 q2 // || // 边界 //注意:这里乘的是xstride int p2 = pix[-3*xstride]; int p1 = pix[-2*xstride]; int p0 = pix[-1*xstride]; int q0 = pix[ 0*xstride]; int q1 = pix[ 1*xstride]; int q2 = pix[ 2*xstride]; //计算方法参考相关的标准 //alpha和beta是用于检查图像内容的2个参数 //只有满足if()里面3个取值条件的时候(只涉及边界旁边的4个点),才会滤波 if( abs( p0 - q0 ) < alpha && abs( p1 - p0 ) < beta && abs( q1 - q0 ) < beta ) { int tc = tc0; int delta; //上面2个点(p0,p2)满足条件的时候,滤波p1 //int x264_clip3( int v, int i_min, int i_max )用于限幅 if( abs( p2 - p0 ) < beta ) { if( tc0 ) pix[-2*xstride] = p1 + x264_clip3( (( p2 + ((p0 + q0 + 1) >> 1)) >> 1) - p1, -tc0, tc0 ); tc++; } //下面2个点(q0,q2)满足条件的时候,滤波q1 if( abs( q2 - q0 ) < beta ) { if( tc0 ) pix[ 1*xstride] = q1 + x264_clip3( (( q2 + ((p0 + q0 + 1) >> 1)) >> 1) - q1, -tc0, tc0 ); tc++; } delta = x264_clip3( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc ); //p0 pix[-1*xstride] = x264_clip_pixel( p0 + delta ); /* p0‘ */ //q0 pix[ 0*xstride] = x264_clip_pixel( q0 - delta ); /* q0‘ */ } }
从源代码可以看出,deblock_edge_luma_c()实现了前文记录的普通强度的滤波公式。
deblock_h_luma_c()
deblock_h_luma_c()是一个普通强度的水平滤波器,用于处理边界强度Bs为1,2,3的垂直边界。该函数的定义如下所示。
//去块效应滤波-普通滤波,Bs为1,2,3 //水平(Horizontal)滤波器 // 边界 // | // x x x | x x x // | static void deblock_h_luma_c( pixel *pix, intptr_t stride, int alpha, int beta, int8_t *tc0 ) { //xstride=1(用于选择滤波的像素) //ystride=stride deblock_luma_c( pix, 1, stride, alpha, beta, tc0 ); }
从源代码可以看出,和deblock_v_luma_c()类似,deblock_h_luma_c()同样调用了deblock_luma_c()函数。唯一的不同在于它传递给deblock_luma_c()的第2个参数xstride为1,第3个参数ystride为stride。
强滤波函数(Bs=4)
deblock_v_luma_intra_c()
deblock_v_luma_intra_c()是一个强滤波的垂直滤波器,用于处理边界强度Bs为4的水平边界。该函数的定义位于common\deblock.c,如下所示。
//垂直(Vertical)强滤波器-Bs为4 // 边界 // x // x // 边界---------- // x // x static void deblock_v_luma_intra_c( pixel *pix, intptr_t stride, int alpha, int beta ) { //注意 //xstride=stride //ystride=1 //处理完1个像素点之后,pix增加ystride //水平滤波和垂直滤波通用的强滤波函数 deblock_luma_intra_c( pix, stride, 1, alpha, beta ); }
可以看出deblock_v_luma_intra_c()调用了另一个函数deblock_luma_intra_c()。需要注意deblock_luma_intra_c()是一个水平滤波器和垂直滤波器都会调用的“通用”滤波器函数。在这里传递给deblock_luma_intra_c()第二个参数xstride的值为stride,第三个参数ystride的值为1。
deblock_luma_intra_c()
deblock_luma_intra_c()是一个通用的滤波器函数,定义如下所示。
//水平滤波和垂直滤波通用的强滤波函数-Bs为4 static inline void deblock_luma_intra_c( pixel *pix, intptr_t xstride, intptr_t ystride, int alpha, int beta ) { //循环处理16个点 //处理完1个像素点之后,pix增加ystride for( int d = 0; d < 16; d++, pix += ystride ) deblock_edge_luma_intra_c( pix, xstride, alpha, beta ); //每次处理1个点 }
从源代码中可以看出,具体的滤波在deblock_edge_luma_intra_c()中完成。处理完一个像素后,会继续处理与当前像素距离为ystride的像素。
deblock_edge_luma_intra_c()
deblock_edge_luma_intra_c()用于完成一个点的滤波工作。该函数的定义如下所示。
//水平滤波和垂直滤波通用的强滤波函数-处理1个点-Bs为4 //注意涉及到8个像素 static ALWAYS_INLINE void deblock_edge_luma_intra_c( pixel *pix, intptr_t xstride, int alpha, int beta ) { //如果xstride=stride,ystride=1 //就是处理纵向的6个像素 //对应的是方块的横向边界的滤波。如下所示: // p2 // p1 // p0 //=====图像边界===== // q0 // q1 // q2 // //如果xstride=1,ystride=stride //就是处理纵向的6个像素 //对应的是方块的横向边界的滤波,即如下所示: // || // p2 p1 p0 || q0 q1 q2 // || // 边界 //注意:这里乘的是xstride int p2 = pix[-3*xstride]; int p1 = pix[-2*xstride]; int p0 = pix[-1*xstride]; int q0 = pix[ 0*xstride]; int q1 = pix[ 1*xstride]; int q2 = pix[ 2*xstride]; //满足条件的时候,才滤波 if( abs( p0 - q0 ) < alpha && abs( p1 - p0 ) < beta && abs( q1 - q0 ) < beta ) { if( abs( p0 - q0 ) < ((alpha >> 2) + 2) ) { if( abs( p2 - p0 ) < beta ) /* p0‘, p1‘, p2‘ */ { const int p3 = pix[-4*xstride]; pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3; pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2; pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3; } else /* p0‘ */ pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; if( abs( q2 - q0 ) < beta ) /* q0‘, q1‘, q2‘ */ { const int q3 = pix[3*xstride]; pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3; pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2; pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3; } else /* q0‘ */ pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } else /* p0‘, q0‘ */ { pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } } }
从源代码可以看出,deblock_edge_luma_intra_c()实现了前文记录的强滤波公式。
至此有关环路滤波的源代码就分析完毕了。
x264_frame_filter()
x264_frame_filter()用于完成半像素内插的工作。该函数的定义位于common\mc.c,如下所示。
//半像素内插 void x264_frame_filter( x264_t *h, x264_frame_t *frame, int mb_y, int b_end ) { const int b_interlaced = PARAM_INTERLACED; int start = mb_y*16 - 8; // buffer = 4 for deblock + 3 for 6tap, rounded to 8 int height = (b_end ? frame->i_lines[0] + 16*PARAM_INTERLACED : (mb_y+b_interlaced)*16) + 8; if( mb_y & b_interlaced ) return; for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) { int stride = frame->i_stride[p]; const int width = frame->i_width[p]; int offs = start*stride - 8; // buffer = 3 for 6tap, aligned to 8 for simd //半像素内插 if( !b_interlaced || h->mb.b_adaptive_mbaff ) h->mc.hpel_filter( frame->filtered[p][1] + offs,//水平半像素内插 frame->filtered[p][2] + offs,//垂直半像素内插 frame->filtered[p][3] + offs,//中间半像素内插 frame->plane[p] + offs, stride, width + 16, height - start, h->scratch_buffer ); if( b_interlaced ) { /* MC must happen between pixels in the same field. */ stride = frame->i_stride[p] << 1; start = (mb_y*16 >> 1) - 8; int height_fld = ((b_end ? frame->i_lines[p] : mb_y*16) >> 1) + 8; offs = start*stride - 8; for( int i = 0; i < 2; i++, offs += frame->i_stride[p] ) { h->mc.hpel_filter( frame->filtered_fld[p][1] + offs, frame->filtered_fld[p][2] + offs, frame->filtered_fld[p][3] + offs, frame->plane_fld[p] + offs, stride, width + 16, height_fld - start, h->scratch_buffer ); } } } /* generate integral image: * frame->integral contains 2 planes. in the upper plane, each element is * the sum of an 8x8 pixel region with top-left corner on that point. * in the lower plane, 4x4 sums (needed only with --partitions p4x4). */ if( frame->integral ) { int stride = frame->i_stride[0]; if( start < 0 ) { memset( frame->integral - PADV * stride - PADH, 0, stride * sizeof(uint16_t) ); start = -PADV; } if( b_end ) height += PADV-9; for( int y = start; y < height; y++ ) { pixel *pix = frame->plane[0] + y * stride - PADH; uint16_t *sum8 = frame->integral + (y+1) * stride - PADH; uint16_t *sum4; if( h->frames.b_have_sub8x8_esa ) { h->mc.integral_init4h( sum8, pix, stride ); sum8 -= 8*stride; sum4 = sum8 + stride * (frame->i_lines[0] + PADV*2); if( y >= 8-PADV ) h->mc.integral_init4v( sum8, sum4, stride ); } else { h->mc.integral_init8h( sum8, pix, stride ); if( y >= 8-PADV ) h->mc.integral_init8v( sum8-8*stride, stride ); } } } }
从源代码中可以看出,x264_frame_filter()调用了汇编函数h->mc.hpel_filter()完成了半像素内插的工作。经过汇编半像素内插函数处理之后,得到的水平半像素内差点存储在x264_frame_t的filtered[][1]中,垂直半像素内差点存储在x264_frame_t的filtered[][2]中,对角线半像素内差点存储在x264_frame_t的filtered[][3]中(整像素点存储在x264_frame_t的filtered[][0]中)。
下文开始分析半像素内插模块调用的汇编函数。
1/4像素内插小知识
(1)半像素内插
简单记录一下半像素插值的知识。《H.264标准》中规定,运动估计为1/4像素精度。因此在H.264编码和解码的过程中,需要将画面中的像素进行插值——简单地说就是把原先的1个像素点拓展成4x4一共16个点。下图显示了H.264编码和解码过程中像素插值情况。可以看出原先的G点的右下方通过插值的方式产生了a、b、c、d等一共16个点。
如图所示,1/4像素内插一般分成两步:
(1)半像素内插。这一步通过6抽头滤波器获得5个半像素点。
(2)线性内插。这一步通过简单的线性内插获得剩余的1/4像素点。
图中半像素内插点为b、m、h、s、j五个点。半像素内插方法是对整像素点进行6 抽头滤波得出,滤波器的权重为(1/32, -5/32, 5/8, 5/8, -5/32, 1/32)。例如b的计算公式为:
b=round( (E - 5F + 20G + 20H - 5I + J ) / 32)
剩下几个半像素点的计算关系如下:
m:由B、D、H、N、S、U计算
h:由A、C、G、M、R、T计算
s:由K、L、M、N、P、Q计算
j:由cc、dd、h、m、ee、ff计算。需要注意j点的运算量比较大,因为cc、dd、ee、ff都需要通过半像素内插方法进行计算。
在获得半像素点之后,就可以通过简单的线性内插获得1/4像素内插点了。1/4像素内插的方式如下图所示。例如图中a点的计算公式如下:
A=round( (G+b)/2 )
在这里有一点需要注意:位于4个角的e、g、p、r四个点并不是通过j点计算计算的,而是通过b、h、s、m四个半像素点计算的。
(2)半像素点实例
下图显示了一个4x4图像块经过半像素内插处理后,得到的半像素与整像素点之间的位置关系。
(3)1/4像素内插
1/4像素内插点是通过是通过半像素点之间(或者和整像素点)线性内插获得。下图显示了一个4x4图像块进行1/4像素内插的过程。上面一张图中水平半像素点(存储于filter[][1])和垂直半像素点(存储于filter[][2])线性内插后得到了绿色的1/4像素内插点X。下面一张图中整像素点(存储于filter[][0])和垂直半像素点(存储于filter[][2])线性内插后得到了绿色的1/4像素内插点X。
x264_mc_init()
x264_mc_init()用于初始化运动补偿相关的汇编函数。该函数的定义位于common\mc.c,如下所示。
//运动补偿 void x264_mc_init( int cpu, x264_mc_functions_t *pf, int cpu_independent ) { //亮度运动补偿 pf->mc_luma = mc_luma; //获得匹配块 pf->get_ref = get_ref; pf->mc_chroma = mc_chroma; //求平均 pf->avg[PIXEL_16x16]= pixel_avg_16x16; pf->avg[PIXEL_16x8] = pixel_avg_16x8; pf->avg[PIXEL_8x16] = pixel_avg_8x16; pf->avg[PIXEL_8x8] = pixel_avg_8x8; pf->avg[PIXEL_8x4] = pixel_avg_8x4; pf->avg[PIXEL_4x16] = pixel_avg_4x16; pf->avg[PIXEL_4x8] = pixel_avg_4x8; pf->avg[PIXEL_4x4] = pixel_avg_4x4; pf->avg[PIXEL_4x2] = pixel_avg_4x2; pf->avg[PIXEL_2x8] = pixel_avg_2x8; pf->avg[PIXEL_2x4] = pixel_avg_2x4; pf->avg[PIXEL_2x2] = pixel_avg_2x2; //加权相关 pf->weight = x264_mc_weight_wtab; pf->offsetadd = x264_mc_weight_wtab; pf->offsetsub = x264_mc_weight_wtab; pf->weight_cache = x264_weight_cache; //赋值-只包含了方形的 pf->copy_16x16_unaligned = mc_copy_w16; pf->copy[PIXEL_16x16] = mc_copy_w16; pf->copy[PIXEL_8x8] = mc_copy_w8; pf->copy[PIXEL_4x4] = mc_copy_w4; pf->store_interleave_chroma = store_interleave_chroma; pf->load_deinterleave_chroma_fenc = load_deinterleave_chroma_fenc; pf->load_deinterleave_chroma_fdec = load_deinterleave_chroma_fdec; //拷贝像素-不论像素块大小 pf->plane_copy = x264_plane_copy_c; pf->plane_copy_interleave = x264_plane_copy_interleave_c; pf->plane_copy_deinterleave = x264_plane_copy_deinterleave_c; pf->plane_copy_deinterleave_rgb = x264_plane_copy_deinterleave_rgb_c; pf->plane_copy_deinterleave_v210 = x264_plane_copy_deinterleave_v210_c; //关键:半像素内插 pf->hpel_filter = hpel_filter; //几个空函数 pf->prefetch_fenc_420 = prefetch_fenc_null; pf->prefetch_fenc_422 = prefetch_fenc_null; pf->prefetch_ref = prefetch_ref_null; pf->memcpy_aligned = memcpy; pf->memzero_aligned = memzero_aligned; //降低分辨率-线性内插(不是半像素内插) pf->frame_init_lowres_core = frame_init_lowres_core; pf->integral_init4h = integral_init4h; pf->integral_init8h = integral_init8h; pf->integral_init4v = integral_init4v; pf->integral_init8v = integral_init8v; pf->mbtree_propagate_cost = mbtree_propagate_cost; pf->mbtree_propagate_list = mbtree_propagate_list; //各种汇编版本 #if HAVE_MMX x264_mc_init_mmx( cpu, pf ); #endif #if HAVE_ALTIVEC if( cpu&X264_CPU_ALTIVEC ) x264_mc_altivec_init( pf ); #endif #if HAVE_ARMV6 x264_mc_init_arm( cpu, pf ); #endif #if ARCH_AARCH64 x264_mc_init_aarch64( cpu, pf ); #endif if( cpu_independent ) { pf->mbtree_propagate_cost = mbtree_propagate_cost; pf->mbtree_propagate_list = mbtree_propagate_list; } }
从源代码可以看出,x264_mc_init()中包含了大量的像素内插、拷贝、求平均的函数。这些函数都是用于在H.264编码过程中进行运动估计和运动补偿的。其中半像素内插函数是hpel_filter()。
hpel_filter()
hpel_filter()用于进行半像素插值。该函数的定义位于common\mc.c,如下所示。
//半像素插值公式 //b= (E - 5F + 20G + 20H - 5I + J)/32 // x //d取1,水平滤波器;d取stride,垂直滤波器(这里没有除以32) #define TAPFILTER(pix, d) ((pix)[x-2*d] + (pix)[x+3*d] - 5*((pix)[x-d] + (pix)[x+2*d]) + 20*((pix)[x] + (pix)[x+d])) /* * 半像素插值 * dsth:水平滤波得到的半像素点(aa,bb,b,s,gg,hh) * dstv:垂直滤波的到的半像素点(cc,dd,h,m,ee,ff) * dstc:“水平+垂直”滤波得到的位于4个像素中间的半像素点(j) * * 半像素插值示意图如下: * * A aa B * * C bb D * * E F G b H I J * * cc dd h j m ee ff * * K L M s N P Q * * R gg S * * T hh U * * 计算公式如下: * b=round( (E - 5F + 20G + 20H - 5I + J ) / 32) * * 剩下几个半像素点的计算关系如下: * m:由B、D、H、N、S、U计算 * h:由A、C、G、M、R、T计算 * s:由K、L、M、N、P、Q计算 * j:由cc、dd、h、m、ee、ff计算。需要注意j点的运算量比较大,因为cc、dd、ee、ff都需要通过半像素内插方法进行计算。 * */ static void hpel_filter( pixel *dsth, pixel *dstv, pixel *dstc, pixel *src, intptr_t stride, int width, int height, int16_t *buf ) { const int pad = (BIT_DEPTH > 9) ? (-10 * PIXEL_MAX) : 0; /* * 几种半像素点之间的位置关系 * * X: 像素点 * H:水平滤波半像素点 * V:垂直滤波半像素点 * C: 中间位置半像素点 * * X H X X X * * V C * * X X X X * * * * X X X X * */ //一行一行处理 for( int y = 0; y < height; y++ ) { //一个一个点处理 //每个整像素点都对应h,v,c三个半像素点 //v for( int x = -2; x < width+3; x++ )//(aa,bb,b,s,gg,hh),结果存入buf { //垂直滤波半像素点 int v = TAPFILTER(src,stride); dstv[x] = x264_clip_pixel( (v + 16) >> 5 ); /* transform v for storage in a 16-bit integer */ //这应该是给dstc计算使用的? buf[x+2] = v + pad; } //c for( int x = 0; x < width; x++ ) dstc[x] = x264_clip_pixel( (TAPFILTER(buf+2,1) - 32*pad + 512) >> 10 );//四个相邻像素中间的半像素点 //h for( int x = 0; x < width; x++ ) dsth[x] = x264_clip_pixel( (TAPFILTER(src,1) + 16) >> 5 );//水平滤波半像素点 dsth += stride; dstv += stride; dstc += stride; src += stride; } }
从源代码可以看出,hpel_filter()中包含了一个宏TAPFILTER()用来完成半像素点像素值的计算。在完成半像素插值工作后,dsth中存储的是经过水平插值后的半像素点,dstv中存储的是经过垂直插值后的半像素点,dstc中存储的是位于4个相邻像素点中间位置的半像素点。这三块内存中的点的位置关系如下图所示(灰色的点是整像素点)。
视频质量计算-PSNR和SSIM
X264中支持两种视频质量计算方法:PSNR和SSIM。这两种的方法都是在x264_fdec_filter_row()中计算完成的。其中PSNR在此只计算了SSD,在编码一帧结束之后的x264_encoder_frame_end()中,调用x264_psnr()完成计算。
视频质量评价的知识
PSNR知识
PSNR(Peak Signal to Noise Ratio,峰值信噪比)是最基础的视频质量评价方法。它的取值一般在20-50之间,值越大代表受损图片越接近原图片。PSNR通过对原始图像和失真图像进行像素的逐点对比,计算两幅图像像素点之间的误差,并由这些误差最终确定失真图像的质量评分。该方法由于计算简便、数学意义明确,在图像处理领域中应用最为广泛。
一幅MxN尺寸的图像的PSNR的计算公式如下所示:
其中xij 和yij 分别表示失真图像和原始图像对应像素点的灰度值;i,j 分别代表图像的行和列;L 是图像灰度值可到达的动态范围,8位的灰度图像的L=2^8-1=255。如果已知SSD,MxN尺寸图像的PSNR公式如下所示。
MSE=SSD*1/(M*N)
PSNR=10*lg(255^2/MSE)
但是PSNR仅仅计算了图像像素点间的绝对误差,没有考虑像素点间的视觉相关性,更没顾及人类视觉系统的感知特性,所以其评价结果与主观感受往往相差较大。例如下图两张图片的PSNR取值都在23.6左右,但是给人的感觉却是(a)图比(b)图清晰得多。
正是由于PSNR方法存在上述的问题,人们才开始研究与人类视觉系统特性相关的质量评价方法。SSIM就是一种典型的与人类视觉系统特性结合的质量评价方法。
SSIM知识
SSIM(Structural SIMilarity,结构相似度)是一种结合了亮度信息,对比度信息以及结构信息的视频质量评价方法。它的取值在0-1之间,值越大代表受损图片越接近原图片。该方法的模型图如下所示。
从模型图可以看出,SSIM 评价方法中的结构相似度由三个层次的结构信息共同决定。首先假设 x、y 分别是原始图像信号和失真图像信号,然后分别计算这两个信号的亮度比较函数l(x,y)、对比度比较函数c(x,y)以及结构比较函数s(x,y),最后经过加权合并计算得出图像结构相似度评价结果。这3个比较函数具体的公式如下所示。
(1)亮度比较函数l(x,y)
亮度均值μx如下所示。
亮度比较函数的公式如下所示。其中C1为常量。
(2)对比度比较函数c(x,y)
亮度标准差σx如下所示。
对比度比较函数的公式如下所示。其中C2为常量。
(3)结构比较函数s(x,y)
两个图像信号的相关系数σxy如下所示。
结构比较函数定义如下所示。其中C3为常量。
SSIM就是将上述三个公式相乘,公式如下所示。
为了便于计算,将α、β、γ的值都设为 1,并且令C3=C2/2,则上式的简化为下式。
实际经验中,对整幅图像直接使用 SSIM 模型,不如局部分块使用最后综合的效果好。因此SSIM的计算都是按照一个一个的小方块(例如8x8这种的方块)进行计算的。
PS:有关PSNR和SSIM和人眼主观感受之间的关系可以参考文章《全参考视频质量评价方法(PSNR,SSIM)以及相关数据库》
视频质量评价的源代码
X264中计算PSNR使用了两个函数:x264_pixel_ssd_wxh()和x264_psnr();而计算SSIM使用了一个函数x264_pixel_ssim_wxh()。
x264_pixel_ssd_wxh()
x264_pixel_ssd_wxh()用于计算SSD(用于以后计算PSNR)。该函数的定义位于common\pixel.c,如下所示。
/* * 计算SSD(可用于计算PSNR) * pix1: 受损数据 * pix2: 原始数据 * i_width: 图像宽 * i_height: 图像高 */ uint64_t x264_pixel_ssd_wxh( x264_pixel_function_t *pf, pixel *pix1, intptr_t i_pix1, pixel *pix2, intptr_t i_pix2, int i_width, int i_height ) { //计算结果都累加到i_ssd变量上 uint64_t i_ssd = 0; int y; int align = !(((intptr_t)pix1 | (intptr_t)pix2 | i_pix1 | i_pix2) & 15); #define SSD(size) i_ssd += pf->ssd[size]( pix1 + y*i_pix1 + x, i_pix1, pix2 + y*i_pix2 + x, i_pix2 ); /* * SSD计算过程: * 从左上角开始,绝大部分块使用16x16的SSD计算 * 右边边界部分可能用16x8的SSD计算 * 下边边界可能用8x8的SSD计算 * 注意:这么做主要是出于汇编优化的考虑 * * +----+----+----+----+----+----+----+----+----+----+-+ * | | | | * + + + + * | | | | * + 16x16 + 16x16 + 8x16 + * | | | | * + + + + * | | | | * +----+----+----+----+----+----+----+----+----+----+-+ * | | * + 8x8 + * | | * +----+----+ * + + */ for( y = 0; y < i_height-15; y += 16 ) { int x = 0; //大部分使用16x16的SSD if( align ) for( ; x < i_width-15; x += 16 ) SSD(PIXEL_16x16); //i_ssd += pf->ssd[PIXEL_16x16](); //右边边缘部分可能用8x16的SSD for( ; x < i_width-7; x += 8 ) SSD(PIXEL_8x16); //i_ssd += pf->ssd[PIXEL_8x16](); } //下边边缘部分可能用到8x8的SSD if( y < i_height-7 ) for( int x = 0; x < i_width-7; x += 8 ) SSD(PIXEL_8x8); //i_ssd += pf->ssd[PIXEL_8x8](); #undef SSD #define SSD1 { int d = pix1[y*i_pix1+x] - pix2[y*i_pix2+x]; i_ssd += d*d; } //如果像素不是16/8的整数倍,边界上的点需要单独算 if( i_width & 7 ) { for( y = 0; y < (i_height & ~7); y++ ) for( int x = i_width & ~7; x < i_width; x++ ) SSD1; } if( i_height & 7 ) { for( y = i_height & ~7; y < i_height; y++ ) for( int x = 0; x < i_width; x++ ) SSD1; } #undef SSD1 return i_ssd; }
从源代码可以看出,x264_pixel_ssd_wxh()在计算大部分块的SSD的时候是以16x16的块为单位;当宽度不是16的整数倍的时候,在左侧边缘处不足16像素的地方使用了8x16的块进行计算;当高度不是16的整数倍的时候,在下方不足16像素的地方使用了8x8的块进行计算;当宽高不是8的整数倍的时候,则再单独计算。计算方法示意图如下所示。
源代码中计算16x16块的SSD的宏“SSD(PIXEL_16x16)”展开的结果如下所示。
i_ssd += pf->ssd[PIXEL_16x16]( pix1 + y*i_pix1 + x, i_pix1, pix2 + y*i_pix2 + x, i_pix2 );
而pf->ssd[PIXEL_16x16]()指向的C语言版本的SSD计算函数为x264_pixel_ssd_16x16()。
x264_pixel_ssd_16x16()
x264_pixel_ssd_16x16()用于计算16x16的两个像素块的SSD。它的源代码如下所示。
static int x264_pixel_ssd_16x16( pixel *pix1, intptr_t i_stride_pix1, pixel *pix2, intptr_t i_stride_pix2 ) { int i_sum = 0; for( int y = 0; y < 16; y++ ) { for( int x = 0; x < 16; x++ ) { int d = pix1[x] - pix2[x]; i_sum += d*d; } pix1 += i_stride_pix1; pix2 += i_stride_pix2; } return i_sum; }
从源代码可以看出,x264_pixel_ssd_16x16()将两个16x16块的对应点相减之后求平方,然后累加。其他尺寸的块的计算也是类似的,再看一个4x4块的例子。
x264_pixel_ssd_4x4()
x264_pixel_ssd_4x4()用于计算4x4的两个像素块的SSD。它的源代码如下所示。
static int x264_pixel_ssd_4x4( pixel *pix1, intptr_t i_stride_pix1, pixel *pix2, intptr_t i_stride_pix2 ) { int i_sum = 0; for( int y = 0; y < 4; y++ ) //4个像素 { for( int x = 0; x < 4; x++ ) //4个像素 { int d = pix1[x] - pix2[x]; //相减 i_sum += d*d; //平方之后,累加 } pix1 += i_stride_pix1; pix2 += i_stride_pix2; } return i_sum; }
可以看出4x4的块和16x16的块的计算方法是类似的,不再重复叙述。在计算完一幅图片的SSD之后,就可以将该值换算成为PSNR了。将SSD换算成PSNR的函数并不在滤波函数x264_fdec_filter_row()中,而是在x264_slice_write()执行完成之后的x264_encoder_frame_end()函数中。
x264_encoder_frame_end()中的x264_psnr()
x264_encoder_frame_end()中的x264_psnr()用于将SSD换算成为PSNR,该函数的定义如下所示。
//通过SSD换算PSNR static double x264_psnr( double sqe, double size ) { /** * 计算PSNR的过程 * * MSE = SSD*1/(w*h) * PSNR= 10*log10(MAX^2/MSE) * * 其中MAX指的是图像的灰度级,对于8bit来说就是2^8-1=255 */ //PIXEL_MAX=255 double mse = sqe / (PIXEL_MAX*PIXEL_MAX * size); if( mse <= 0.0000000001 ) /* Max 100dB */ return 100; //MSE转换为PSNR return -10.0 * log10( mse ); }
从源代码中可以看出,x264_psnr()实现了上文中提到的MxN尺寸图像的PSNR计算公式:
MSE=SSD*1/(M*N)
PSNR=10*lg(255^2/MSE)
PS:实现过程看上去有点不同,实际上是一样的。
x264_pixel_ssim_wxh()
x264_pixel_ssim_wxh()用于计算SSIM。该函数的定义位于common\pixel.c,如下所示。
/* * 计算SSIM * pix1: 受损数据 * pix2: 原始数据 * i_width: 图像宽 * i_height: 图像高 */ float x264_pixel_ssim_wxh( x264_pixel_function_t *pf, pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, int width, int height, void *buf, int *cnt ) { /* * SSIM公式 * SSIM = ((2*ux*uy+C1)(2*σxy+C2))/((ux^2+uy^2+C1)(σx^2+σy^2+C2)) * * 其中 * ux=E(x) * uy=E(y) * σxy=cov(x,y)=E(XY)-ux*uy * σx^2=E(x^2)-E(x)^2 * */ int z = 0; float ssim = 0.0; //这是数组指针,注意和指针数组的区别 //数组指针就是指向数组的指针 int (*sum0)[4] = buf; /* * sum0是一个数组指针,其中存储了一个4元素数组的地址 * 换句话说,sum0[]中每一个元素对应一个4x4块的信息(该信息包含4个元素)。 * * 4个元素中: * [0]原始像素之和 * [1]受损像素之和 * [2]原始像素平方之和+受损像素平方之和 * [3]原始像素*受损像素的值的和 * */ int (*sum1)[4] = sum0 + (width >> 2) + 3; //除以4,编程以“4x4块”为单位 width >>= 2; height >>= 2; //以8*8的块为单位计算SSIM值。然后以4个像素为step滑动窗口 for( int y = 1; y < height; y++ ) { //下面这个循环,只有在第一次执行的时候执行2次,处理第1行和第2行的块 //后面的都只会执行一次 for( ; z <= y; z++ ) { //执行完XCHG()之后,sum1[]存储上1行块的值(在上面),而sum0[]等待ssim_4x4x2_core()计算当前行的值(在下面) XCHG( void*, sum0, sum1 ); //获取4x4块的信息(这里并没有代入公式计算SSIM结果) //结果存储在sum0[]中。从左到右每个4x4的块依次存储在sum0[0],sum0[1],sum0[2]... //每次x前进2个块 /* * ssim_4x4x2_core():计算2个4x4块 * +----+----+ * | | | * +----+----+ */ for( int x = 0; x < width; x+=2 ) pf->ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] ); } //x每次增加4,前进4个块 //以8*8的块为单位计算 /* * sum1[]为上一行4x4块信息,sum0[]为当前行4x4块信息 * 示例(line以4x4块为单位) * 第1次运行 * +----+----+----+----+ * 1line | sum1[] * +----+----+----+----+ * 2line | sum0[] * +----+----+----+----+ * * 第2次运行 * + * 1line | * +----+----+----+----+ * 2line | sum1[] * +----+----+----+----+ * 3line | sum0[] * +----+----+----+----+ */ for( int x = 0; x < width-1; x += 4 ) ssim += pf->ssim_end4( sum0+x, sum1+x, X264_MIN(4,width-x-1) );//累加 } *cnt = (height-1) * (width-1); return ssim; }
计算SSIM这段代码虽然看上去比较短,但是却不太容易理解。总体说来这段代码实现的SSIM的计算是以8x8的块为单元,而以4为滑动窗口的滑动步长。计算的示意图如下所示,图中每一个小方块代表一个4x4的像素块,绿色方块是正在计算区域。
x264_pixel_ssim_wxh()中是按照4x4的块对像素进行处理的。使用sum1[]保存上一行块的“信息”,sum0[]保存当前一行块的“信息”。“信息”包含4个元素:
s1: 原始像素之和
s2: 受损像素之和
ss: 原始像素平方之和+受损像素平方之和
s12: 原始像素*受损像素的值的和
ssim_4x4x2_core()用于获取上述信息;而ssim_end4()用于根据这些信息计算SSIM。
ssim_4x4x2_core()
ssim_4x4x2_core()用于获取2个4x4块计算SSIM时候需要用到的信息。该函数的定义如下所示。
/**************************************************************************** * structural similarity metric * 获取2个4x4的块的信息 ****************************************************************************/ static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1, const pixel *pix2, intptr_t stride2, int sums[2][4] ) { //计算2个块,分别存在sums[0]和sums[1] for( int z = 0; z < 2; z++ ) { uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0; /* * 计算4x4块 * +----+ * | | * +----+ */ for( int y = 0; y < 4; y++ ) for( int x = 0; x < 4; x++ ) { //两个图像上分别取一个点 int a = pix1[x+y*stride1]; int b = pix2[x+y*stride2]; //累加 s1 += a; s2 += b; //平方累加 ss += a*a; ss += b*b; //相乘累加 s12 += a*b; } /* * [0]原始像素之和 * [1]受损像素之和 * [2]原始像素平方之和+受损像素平方之和 * [3]原始像素*受损像素的值的和 * * [0]为a00+a01+a02.... * [1]为b00+b01+b02.... * [2]为a00^2 +a01^2+...+b00^2+b01^2+... * [3]为a00*b00+a01*b01+... */ sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; //右移4个像素 pix1 += 4; pix2 += 4; } }
从源代码可以看出,ssim_4x4x2_core()计算了2个4x4的下列信息:
s1: 原始像素之和
s2: 受损像素之和
ss: 原始像素平方之和+受损像素平方之和
s12: 原始像素*受损像素的值的和
ssim_end4()
ssim_end4()用于计算SSIM,它的定义如下所示。
//width一般取4 static float ssim_end4( int sum0[5][4], int sum1[5][4], int width ) { float ssim = 0.0; //循环计算8x8块的SSIM(通过4个4x4块),并且累加 /* * +----+----+----+----+----+ * sum1 | 0 | 1 | 2 | 3 | 4 | * +----+----+----+----+----+ * sum0 | 0 | 1 | 2 | 3 | 4 | * +----+----+----+----+----+ * * +----+----+ * sum1 | 0 | 1 | * +----+----+ * sum0 | 0 | 1 | * +----+----+ * * +----+----+ * sum1 | 1 | 2 | * +----+----+ * sum0 | 1 | 2 | * +----+----+ * * +----+----+ * sum1 | 2 | 3 | * +----+----+ * sum0 | 2 | 3 | * +----+----+ * * +----+----+ * sum1 | 3 | 4 | * +----+----+ * sum0 | 3 | 4 | * +----+----+ * */ for( int i = 0; i < width; i++ ) ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0], sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1], sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2], sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] ); return ssim; }
该函数中,sum0[]存储了当前一行4x4块的信息,sum1[]存储了上一行4x4块的信息,将sum0[i],sum0[i+1],sum1[i],sum1[i]四个4x4块结合之后就形成了1个8x8的块,传递给ssim_end1()进行计算。
ssim_end1()
ssim_end1()根据SSIM的公式计算1个块的SSIM。该函数的定义如下所示。
//计算1个块的SSIM static float ssim_end1( int s1, int s2, int ss, int s12 ) { /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases. * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784. * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */ #if BIT_DEPTH > 9 #define type float static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64; static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63; #else #define type int //常量C1,C2 static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5); static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5); #endif /* * SSIM公式 * SSIM = ((2*ux*uy+C1)(2*σxy+C2))/((ux^2+uy^2+C1)(σx^2+σy^2+C2)) * 其中 * ux=E(x) * uy=E(y) * σxy=cov(x,y)=E(XY)-ux*uy * σx^2=E(x^2)-E(x)^2 * * 4个元素中: * [0]原始像素之和 * [1]受损像素之和 * [2]原始像素平方之和+受损像素平方之和 * [3]原始像素*受损像素的值的和 * */ //注意:这里都没有求平均值 //E(x) type fs1 = s1; //E(y) type fs2 = s2; type fss = ss; type fs12 = s12; //E(x^2)-E(x)^2+E(y^2)-E(y)^2 type vars = fss*64 - fs1*fs1 - fs2*fs2; //cov(x,y) type covar = fs12*64 - fs1*fs2; //计算公式在这里 return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2) / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2)); #undef type }
从源代码可以看出,ssim_end1()实现了上文所述的SSIM计算公式。
至此有关x264中的滤波模块的源代码就分析完毕了。
雷霄骅
[email protected]
http://blog.csdn.net/leixiaohua1020