Netflix公布个性化和推荐系统架构

Netflix的推荐和个性化功能向来精准,前不久,他们公布了自己在这方面的系统架构。

3月27日,Netflix的工程师Xavier AmatrainJustin Basilico在官方博客发布文章,介绍了自己的个性化和推荐系统架构。文章开头,他们指出:

要开发出这样的一个软件架构,能够处理海量现有数据、响应用户交互,还要易于尝试新的推荐方法,这可不一点都不容易。

接下来,文章贴出了他们的系统框架图,其中的主要组件包括多种机器学习算法。

他们这样解释其中的组件和处理过程:

对于数据,最简单的方法是存下来,留作后续离线处理,这就是我们用来管理离线作业(Offline jobs)的部分架构。计算可以以离线、接近在线或是在线方式完成。在线计算(Online computation)能更快地响应最近的事件和用户交互,但必须实时完成。这会限制使用算法的复杂性和处理的数据量。离线计算(Offline computation)对于数据数量和算法复杂度限制更少,因为它以批量方式完成,没有很强的时间要求。不过,由于没有及时加入最新的数据,所以很容易过时。个性化架构的关键问题,就是如何以无缝方式结合、管理在线和离线计算过程。接近在线计算(Nearline computation)介于两种方法之间,可以执行类似于在线计算的方法,但又不必以实时方式完成。模型训练(Model training)是另一种计算,使用现有数据来产生模型,便于以后在对实际结果计算中使用。另一块架构是如何使用事件和数据分发系统(Event and Data Distribution)处理不同类型的数据和事件。与之相关的问题,是如何组合在离线、接近在线和在线之间跨越的不同的信号和模型(Signals and Models)。最后,需要找出如何组合推荐结果(Recommendation Results),让其对用户有意义。

接下来,文章分析了在线、接近在线和离线计算。

对于在线计算,相关组件需要满足SLA对可用性和响应时间的要求,而且纯粹的在线计算在某型情形下可能无法满足SLA,因此,快速的备用方案就很重要,比如返回预先计算好的结果等。在线计算还需要不同的数据源确保在线可用,这需要额外的基础设施。

离线计算在算法上可相对灵活,工程方面的需求也简单。客户端的SLA响应时间要求也不高。在部署新算法到生产环境时,对于性能调优的需求也不高。Netflix利用这种灵活性来完成快速实验:如果某个新的实验算法执行较慢,他们会部署更多Amazon EC2实例来达成吞吐处理目标,而不是花费宝贵的工程师时间去优化性能,因为业务价值可能不是很高。

接近在线计算与在线计算执行方式相同,但计算结果不是马上提供,而是暂时存储起来,使其具备异步性。接近在线计算的完成是为了响应用户事件,这样系统在请求之间响应速度更快。这样一来,针对每个事件就有可能完成更复杂的处理。增量学习算法很适合应用在接近在线计算中。

不管什么情况,选择在线、接近在线、还是离线处理,这都不是非此即彼的决策。所有的方式都可以、而且应该结合使用。 …… 即使是建模部分也可以用在线和离线的混合方式完成。这可能不适合传统的监督分类法(supervised classification)应用,因为分类器必须从有标记的数据中批量培训,而且只能以在线方式使用,对新输入分类。不过,诸如矩阵因子分解这样的方法更适合混合离线和在线建模方法:有些因子可以预先以离线方式计算,有些因子可以实时更新,创建更新的结果。其他诸如集群处理这样的非监督方法,也可以对集群中心进行离线计算,对集群节点进行在线作业。这些例子说明:模型训练可以分解为大规模和复杂的全局模型训练,以及轻量级的用户指定模型训练或更新阶段,以在线方式完成。

对于离线作业(Offline jobs),主要用来运行个性化机器学习算法。这些作业会定期执行,而且不必与结果的请求和展示同步。主要有两种任务这样处理:模型训练和中间与最终结果批量计算(batch computation of intermediate or final results)。不过,他们也有一些学习算法是以在线增量方式完成的。

这两种任务都需要改善数据,通常是由数据库查询完成。由于这些查询要操作大量数据,以分布式方式完成更方便,因此通过Hadoop或是Hive、Pig作业就是自然而然的事情。一旦查询完成,就需要某种机制发布产生的数据。对于这样的机制,Netflix有如下需求:

  • 可以通知订阅者查询完成。
  • 支持不同存储方式(不只是HDFS,还有S3或是Cassandra等等)
  • 应该透明处理错误,允许监控和报警。

Netflix使用内部的工具Hermes完成这些功能,它将数据以接近实时的方式交付给订阅者,在某些方面接近Apache Kafka,但它不是消息/事件队列系统。

无论是离线还是在线计算,都需要处理三种输入:模型、数据和信号。模型是以离线方式训练完成的参数文件,数据是已完成处理的信息,存在某种数据库中。在Netflix,信号是指输入到算法中的新鲜信息。这些数据来自实时服务,可用其产生用户相关数据。

对于事件和数据分发,Netflix会从多种设备和应用中收集尽可能多的用户事件,并将其集中起来为算法提供基础数据。他们区分了数据和事件。事件是对时间敏感的信息,需要尽快处理。事件会路由、触发后续行动或流程。而数据需要处理和存储,便于以后使用,延迟不是重要,重要的是信息质量和数量。有些用户事件也会被作为数据处理。

Netflix使用内部框架Manhattan处理接近实时的事件流。该分布式计算系统是推荐算法架构的中心。它类似Twitter的Storm,但是用处不同,而且响应不同的内部需求。数据流主要通过Chukwa,输入到Hadoop,进行处理的初步阶段。此后使用Hermes作为发布-订阅机制。

Netflix使用Cassandra、EVCache和MySQL存储离线和中间结果。它们各有利弊。MySQL存储结构化关系数据,但会面临分布式环境中的扩展性问题。当需要大量写操作时,他们使用EVCache更合适。关键问题在于,如何满足查询复杂度、读写延迟、事务一致性等彼此冲突的需求,要对于各种情况到达某个最优点。

在总结中,他们指出:

我们需要具备使用复杂机器学习算法的能力,这些算法要可以适应高度复杂性,可以处理大量数据。我们还要能够提供灵活、敏捷创新的架构,新的方法可以很容易在其基础上开发和插入。而且,我们需要我们的推荐结果足够新,能快速响应新的数据和用户行为。找到这些要求之间恰当的平衡并不容易,需要深思熟虑的需求分析,细心的技术选择,战略性的推荐算法分解,最终才能为客户达成最佳的结果。

(源:http://www.infoq.com/cn/news/2013/04/netflix-ml-architecture/)

时间: 2024-10-20 22:56:45

Netflix公布个性化和推荐系统架构的相关文章

推荐系统架构(摘自《推荐系统实践》)

摘要: 1.外围架构 2.推荐系统架构 内容: 1.外围架构: 网站的推荐系统是如何和其他其他系统结合的? 2.推荐系统架构图: 其中每一个推荐引擎负责一类特征和一种任务,而推荐系统的任务只是将推荐引擎的结果按照一定的权重或者优先级合并,排序然后返回. 好处: 1.可以方便的插拔推荐引擎插件,控制不同引擎对推荐结果的影响. 2.每一种推荐引擎代表一种推荐策略,不同的用户可能喜欢不同的推荐策略,通过分析用户对不同推荐结果的反馈了解用户比较喜欢那些推荐引擎出来的结果,从而对不同用户给出不同的引擎组合

推荐系统架构

推荐系统架构 下图所示是业界推荐系统通用架构图,主要包括:底层基础数据.数据加工存储.召回内容.计算排序.过滤和展示.业务应用.底层基础数据是推荐系统的基石,只有数据量足够多,才能从中挖掘出更多有价值的信息,进而更好地为推荐系统服务.底层基础数据包括用户和物品本身数据.用户行为数据.用户系统上报数据等. 召回内容 电商网站.内容网站.视频网站中数据量很大,并不能直接把所有的物品数据全部输送到推荐系统进行排序,那么如何对物品进行筛选就成了很关键的问题.第4章中介绍了一些常用的数据挖掘算法和应用场景

转:netflix推荐系统竞赛

原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin Basilico 翻译:大魁 前言 Nexflix是一家提供在线视频流媒体服务和DVD租赁业务的公司,也是著名的Netflix大奖赛的发起者.如果读者希望进一步了解Netflix,建议读一下和讯上的一篇文章: Netflix:从传统DVD租赁向流媒体华丽转身 以及爱范儿上的: Netflix成功的

0 深度解析京东个性化推荐系统演进史 (转)

在电商领域,推荐的价值在于挖掘用户潜在购买需求,缩短用户到商品的距离,提升用户的购物体验. 京东推荐的演进史是绚丽多彩的.京东的推荐起步于2012年,当时的推荐产品甚至是基于规则匹配做的.整个推荐产品线组合就像一个个松散的原始部落一样,部落与部落之前没有任何工程.算法的交集. 2013年,国内大数据时代到来,一方面如果做的事情与大数据不沾边,都显得自己水平不够,另外一方面京东业务在这一年开始飞速发展,所以传统的方式已经跟不上业务的发展了,为此推荐团队专门设计了新的推荐系统. 随着业务的快速发展以

Netflix推荐系统:从评分预测到消费者法则

原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin Basilico 翻译:大魁 前言 Nexflix是一家提供在线视频流媒体服务和DVD租赁业务的公司,也是著名的Netflix大奖赛的发起者.如果读者希望进一步了解Netflix,建议读一下和讯上的一篇文章: Netflix:从传统DVD租赁向流媒体华丽转身 以及爱范儿上的: Netflix成功的

Netflix 推荐系统:第一部分

原文链接:http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html 在这篇包含两个部分的博文中,我们将揭开 Netflix 最有价值的资产——推荐系统的面纱.在第一部分,我们将介绍 Netflix Prize 对推荐领域的贡献,Netflix 推荐服务的主要模块,以及推荐服务如何满足网站的商业需求.在第二部分,我们将介绍我们使用的数据和模型,讨论如何将离线的机器学习实验与线上的 A/B 测试相结

个性化推荐系统最近一些复盘以及探索

最近和很多人探讨.交流推荐系统相关很多事情,喜欢这种理性探讨,这种探讨能够让双方都有收获,一个是负 反馈再有就是对于推荐系统怎样做深入,再有就是推荐系统架构一点思索. 负反馈最近探讨很多一个问题.一直有疑惑,大部分的内容都是关于movielens这种含有客户负反馈的,但是我 只是一个普通的电商网站,只有客户的购买浏览等记录,却缺乏客户不喜欢物品的负反馈,即使是我使用itemcf,也 只能是单类协同过滤,效果不是很好,查了一些paper,除了使用其他的结合内容,上下文等之外,就只有采样了, 但是我

基于Neo4j的个性化Pagerank算法文章推荐系统实践

新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank算法>(Efficient Algorithms for Personalized PageRank)(https://arxiv.org/pdf/1512.04633.pdf),在论文中,有一个比较有趣的示例: 我们想在论文引用网络中进行个性化搜索的尝试,但是要怎样设置个性化PageRank的参数,才

推荐系统

推荐系统 1.缘起 糖豆作为国内最大的广场舞平台,全网的MAU已经超过4000万,每月PGC和UCG生产的视频个数已经超过15万个,每月用户观看的视频也超过100万个.然而之前糖豆APP首页主要还是依赖内容编辑手工推荐来发现内容,每天的推荐量也是几十个而已.明显可见千人一面的内容分发效率比较低下,继而我们于2016年12月初,启动了糖豆推荐系统的设计以及开发,目前截止到2017年1月初,已经完成第一期推荐系统的开发与评估.推荐项目立项伊始,我撰写了一篇整体架构与设计,本文和架构一文在部分内容有所