《数据结构与算法分析》学习笔记(二)——算法分析

一、对算法分析方法的最简单的理解和使用方法

1、首先大家可能一般会被那些数学的概念搞晕,其实简单理解下来,就是假设任何语句执行的效率都是一样的,所以设定每一个语句的执行时间都是一个时间单位,那么只要计算这个程序到底执行了多少语句,就可以算出其时间复杂度。

2、其次就是我们要明白,我们是个估算,所以可以进行化简,明显我们可以忽略那些相对来说低阶的项,只分洗最高阶项。然后主要就是有这些常见的法则:

(1)FOR循环

一次for循环的运行时间至多是该for循环内语句的运行时间乘以迭代次数。

(2)嵌套的FOR循环

肯定是计算最内层循环语句的执行次数,然后再乘以所以循环的迭代次数。

(3)整个程序

其实找到循环迭代次数最多,嵌套最多的进行计算就好。

3、当然,我们计算的只是大概值,而且为了计算的简便,我们一边进行适当的放大,即只考虑最坏最坏的情况,算出其时间复杂度即可。

二、最大子序列

书中通过4种不同的解法来进一步强化我们应该如何计算时间复杂度,小白我也好好学习了下,在此写下学习笔记。

题目:算出一个整数序列中最大的子序列的值。

算法一:

int MaxSubsequenceSum1(const int A[],int N)

{

int thisSum , MaxSum;

MaxSum=0;

for (int i =0; i<N; i++)

{

for (int j=i; j<N; j++)

{

thisSum=0;

for (int K =i; K<=j; K++)

{

thisSum+=A[K];

}

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

}

}

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

}

}

return MaxSum;

}

我们可以看出其最大的for循环有三重,而且最坏的可能迭代次数都是N,所以我们可以很容易的得出,此算法的时间复杂度为O(N^3),其中资源最明显的浪费就在重复计算了从低i到第k的子序列的值,所以算法二便是进行了简单的修改。
算法二:

int MaxSubsequenceSum2(const int A[],int N)

{

int thisSum,MaxSum;

MaxSum=0;

for (int i=0; i<N; i++)

{

thisSum=0;

for (int j=i; j<N; j++)

{

thisSum+=A[j];

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

}

}

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

}

}

return MaxSum;

}

其实改变的地方即使采用的累加的策略而已,但却使效率大大的提高了,所以这里也是提高算法效率的一个小小的技巧,即尽力减少不必要的计算,尽量利用现有的计算结果。
算法三:

int Max3(const int a,const int b,const int c)

{

int temp = (a>b)?a:b;

temp=(temp>c)?temp:c;

return temp;

}

int MaxSubSum(const int A[],int Left,int Right)

{

int MaxLeftSum,MaxRightSum;

int MaxLeftBorderSum,MaxRightBorderSum;

int LeftBorderSum,RightBorderSum;

if(Left==Right)

{

if(A[Left]>0)

return A[Left];

else

return 0;

}

int center=(Right+Left)/2;

MaxLeftSum=MaxSubSum(A, Left, center);

MaxRightSum=MaxSubSum(A, center+1, Right);

LeftBorderSum=MaxLeftBorderSum=0;

for(int i=center;i>=Left;i--)

{

LeftBorderSum+=A[i];

if(LeftBorderSum>MaxLeftBorderSum)

{

MaxLeftBorderSum=LeftBorderSum;

}

}

RightBorderSum=MaxRightBorderSum=0;

for(int i=center+1;i<=Right;i++)

{

RightBorderSum+=A[i];

if (RightBorderSum>MaxRightBorderSum)

{

MaxRightBorderSum=RightBorderSum;

}

}

return Max3(MaxLeftSum,MaxRightSum,MaxLeftBorderSum+MaxRightBorderSum);

}

int MaxSubsequenceSum3(const int A[],int N)

{

int MaxSum = MaxSubSum(A, 0, N-1);

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

}

}

return MaxSum;

}

这个算法使用了分治的思想,还有递归的思想,即把一个问题不断的分解成类似的规模更小的子问题来解决,所以这里我们要求一个序列的最大子序列,其实就是求左半部分,有伴部分和中间部分的最大子序列,而求左半部分,后半部分的最大子序列显然是将问题的规模变小了,所以可以递归使用,直到剩下一个数的情况.而中间部分呢,则取左右两边,左边从右往左,右边从左往右的最大子序列。然后加起来作为中间部分的值,最后比较中间部分,左半部分,后半部分三部分的值就可以得到结果啦。

算法四:

int MaxSubsequenceSum4(const int A[],int N)

{

int thisSum,MaxSum;

thisSum = MaxSum=0;

for(int i=0;i<N;i++)

{

thisSum+=A[i];

if(thisSum>MaxSum)

{

MaxSum=thisSum;

}

else if(thisSum<0)

{

thisSum=0;

}

}

if(MaxSum==0)

{

int i;

for(i=0;i<N;i++)

{

if(A[i]!=0)

break;

}

if(i!=N)

{

int Max=A[0];

for(int j=0;j<N;j++)

{

if(A[j]>Max)

{

Max=A[j];

}

}

MaxSum=Max;

}

}

return MaxSum;

}

最后一个算法就比较牛逼啦,这个算法竟然只是N阶的,大家可以想想这个算法的速度有多快,而且如果不考虑全是负数的情况的话,还可以做到随时读入,随时释放内存的强大功能,在此深深膜拜一下。

《数据结构与算法分析》学习笔记(二)——算法分析,布布扣,bubuko.com

时间: 2024-12-14 13:06:02

《数据结构与算法分析》学习笔记(二)——算法分析的相关文章

小猪的数据结构学习笔记(二)

小猪的数据结构学习笔记(二) 线性表中的顺序表 本节引言: 在上个章节中,我们对数据结构与算法的相关概念进行了了解,知道数据结构的 逻辑结构与物理结构的区别,算法的特性以及设计要求;还学了如何去衡量一个算法 的好坏,以及时间复杂度的计算!在本节中我们将接触第一个数据结构--线性表; 而线性表有两种表现形式,分别是顺序表和链表;学好这一章很重要,是学习后面的基石; 这一节我们会重点学习下顺序表,在这里给大家一个忠告,学编程切忌眼高手低,看懂不代表自己 写得出来,给出的实现代码,自己要理解思路,自己

APUE 学习笔记(二) 文件I/O

1. 文件I/O 对于内核而言,所有打开的文件都通过文件描述符引用,内核不区分文本文件和二进制文件 open函数:O_RDONLY  O_WRONLY  O_RDWR create函数: close函数:关闭一个文件时还会释放该进程加在该文件上的所有记录锁 lseek函数:显式地为一个打开的文件设置其偏移量 每个打开的文件都有一个与其相关联的 "当前文件偏移量",用以度量从文件开始处计算的字节数,通常,读.写操作都从当前文件偏移量处开始,并使偏移量增加所读写的字节数 文件偏移量可以大于

Ajax学习笔记(二)

二.prototype库详解 1.prototype库的使用 //导入下载好的prototype.js文件 <script type="text/javascript" src="prototype.js"></script> //在自己的js中直接使用Prototype对象 <script type="text/javascript"> document.writeln("Prototype库的版本

Caliburn.Micro学习笔记(二)----Actions

Caliburn.Micro学习笔记(二)----Actions 上一篇已经简单说了一下引导类和简单的控件绑定 我的上一个例子里的button自动匹配到ViewModel事件你一定感觉很好玩吧 今天说一下它的Actions,看一下Caliburn.Micro给我们提供了多强大的支持 我们还是从做例子开始 demo的源码下载在文章的最后 例子1.无参数方法调用 点击button把textBox输入的文本弹出来 如果textbox里没有文本button不可点,看一下效果图 看一下前台代码 <Stac

2. 蛤蟆Python脚本学习笔记二基本命令畅玩

2. 蛤蟆Python脚本学习笔记二基本命令畅玩 本篇名言:"成功源于发现细节,没有细节就没有机遇,留心细节意味着创造机遇.一件司空见惯的小事或许就可能是打开机遇宝库的钥匙!" 下班回家,咱先来看下一些常用的基本命令. 欢迎转载,转载请标明出处:http://blog.csdn.net/notbaron/article/details/48092873 1.  数字和表达式 看下图1一就能说明很多问题: 加法,整除,浮点除,取模,幂乘方等.是不是很直接也很粗暴. 关于上限,蛤蟆不太清楚

JavaScript--基于对象的脚本语言学习笔记(二)

第二部分:DOM编程 1.文档象模型(DOM)提供了访问结构化文档的一种方式,很多语言自己的DOM解析器. DOM解析器就是完成结构化文档和DOM树之间的转换关系. DOM解析器解析结构化文档:将磁盘上的结构化文档转换成内存中的DOM树 从DOM树输出结构化文档:将内存中的DOM树转换成磁盘上的结构化文档 2.DOM模型扩展了HTML元素,为几乎所有的HTML元素都新增了innerHTML属性,该属性代表该元素的"内容",即返回的某个元素的开始标签.结束标签之间的字符串内容(不包含其它

马哥学习笔记二十四——分布式复制快设备drbd

DRBD: 主从 primary: 可执行读.写操作 secondary: 文件系统不能挂载 DRBD: dual primay, 双主(基于集群文件系统的高可用集群) 磁盘调度器:合并读请求,合并写请求: Procotol:drbd数据同步协议 A: Async, 异步  数据发送到本机tcp/ip协议栈 B:semi sync, 半同步  数据发送到对方tcp/ip协议 C:sync, 同步  数据到达对方存储设备 DRBD Source: DRBD资源 资源名称:可以是除了空白字符外的任意

【Unity 3D】学习笔记二十八:unity工具类

unity为开发者提供了很多方便开发的工具,他们都是由系统封装的一些功能和方法.比如说:实现时间的time类,获取随机数的Random.Range( )方法等等. 时间类 time类,主要用来获取当前的系统时间. using UnityEngine; using System.Collections; public class Script_04_13 : MonoBehaviour { void OnGUI() { GUILayout.Label("当前游戏时间:" + Time.t

Spring Batch学习笔记二

此系列博客皆为学习Spring Batch时的一些笔记: Spring Batch的架构 一个Batch Job是指一系列有序的Step的集合,它们作为预定义流程的一部分而被执行: Step代表一个自定义的工作单元,它是Job的主要构件块:每一个Step由三部分组成:ItemReader.ItemProcessor.ItemWriter:这三个部分将执行在每一条被处理的记录上,ItemReader读取每一条记录,然后传递给ItemProcessor处理,最后交给ItemWriter做持久化:It

angular学习笔记(二十八)-$http(6)-使用ngResource模块构建RESTful架构

ngResource模块是angular专门为RESTful架构而设计的一个模块,它提供了'$resource'模块,$resource模块是基于$http的一个封装.下面来看看它的详细用法 1.引入angular-resource.min.js文件 2.在模块中依赖ngResourece,在服务中注入$resource var HttpREST = angular.module('HttpREST',['ngResource']); HttpREST.factory('cardResource