GuGuFishtion HDU - 6390 (欧拉函数,容斥)

GuGuFishtion

\[
Time Limit: 1500 ms\quad Memory Limit: 65536 kB
\]

题意

给出定义\(Gu(a, b) = \frac{\phi(ab)}{\phi(a)\phi(b)}\)
求出\(\sum_{a=1}^{m}\sum_{b=1}^{n}Gu(a,b) (mod p)\)

思路

首先对于欧拉函数,我们知道欧拉函数的朴素式子为:\(\phi(n) = n*(1-\frac{1}{p1})*(1-\frac{1}{p2}) * ... * (1-\frac{1}{pn})\),\(pi\) 为 \(n\) 的质因子。
对于任意两个数 \(a,b\),令 \(g = gcd(a, b)\)

  1. 若 \(g != 1\),令 \(pi\) 为 \(a\) 特有的质因子,\(qi\) 为 \(b\) 特有的质因子,\(ti\) 为\(a,b\) 共有的质因子,那么将 \(Gu(a, b)\) 展开,就可以得到
    \[
    \begin{aligned}
    Gu(a, b) &= \frac{\phi(ab)}{\phi(a)\phi(b)}\ &= \frac{ab \prod(1-\frac{1}{pi}) \prod(1-\frac{1}{ti}) \prod(1-\frac{1}{qi}) }{a \prod(1-\frac{1}{pi}) \prod(1-\frac{1}{ti}) b \prod(1-\frac{1}{qi})\prod(1-\frac{1}{ti})} \ &= \frac{1}{\prod(1-\frac{1}{ti})}
    \end{aligned}
    \]
    现在我们设 \(x\),\(x\) 包括了所有的 \(ti\),那么就有
    \[
    \begin{aligned}
    Gu(a, b) &= \frac{1}{\prod(1-\frac{1}{ti})} \ &= \frac{x}{x\prod(1-\frac{}1{ti})} \ &= \frac{x}{\phi(x)}
    \end{aligned}
    \]
    \(x\) 也很好知道是多少,其实 \(g\) 就满足同时包括了所有 \(ti\) 的数,所以我们可以设 \(x = g\),就可以得到 \(Gu(a,b) = \frac{g}{\phi(g)}\)。
  2. 若 \(g=1\),此时不存在 \(ti\),但这是 \(Gu(a, b)\) 展开后全部消掉了,所以答案为 \(1\),而 \(\frac{1}{\phi(1)}\) 也正好为 \(1\),所以也可以看成 \(Gu(a,b) = \frac{g}{\phi(g)}\)。

综合上述,\(Gu(a,b) = \frac{g}{\phi(g)}\)。
此时我们只要计算出 \(gcd(a, b) = x (a\in [1,m], b\in[1,n])\) 的对数,就可以直接计算答案了。
这里可以利用经典的莫比乌斯反演,也可以利用容斥原理。
令:
\(f(i)\) 表示 \(gcd\) 等于 \(i的倍数\) 的对数
\(g(i)\) 表示 \(gcd\) 等于 \(i\) 的对数
那么就有
\[
f(i) = \lfloor\frac{m}{i}\rfloor \lfloor\frac{n}{i} \rfloor \g(i) = f(i) - \sum_{j=2}^{i*j<=min(n,m)} g(ij)
\]
如此倒着计算 \(g(i)\),就可以得出答案。

Hint

emmmm,这题其实有点卡常,要注意取模的次数和自然数逆元打标的姿势。

/***************************************************************
    > File Name    : a.cpp
    > Author       : Jiaaaaaaaqi
    > Created Time : 2019年08月26日 星期一 16时58分58秒
 ***************************************************************/

#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define  lowbit(x)  x & (-x)
#define  mes(a, b)  memset(a, b, sizeof a)
#define  fi         first
#define  se         second
#define  pb         push_back
#define  pii        pair<int, int>

typedef unsigned long long int ull;
typedef long long int ll;
const int    maxn = 1e6 + 10;
const int    maxm = 1e5 + 10;
const ll     mod  = 1e9 + 7;
const ll     INF  = 1e18 + 100;
const int    inf  = 0x3f3f3f3f;
const double pi   = acos(-1.0);
const double eps  = 1e-8;
using namespace std;

ll n, m;
int cas, tol, T;

int pri[maxn], phi[maxn];
bool ispri[maxn];
ll f[maxn], g[maxn], inv[maxn];

void handle() {
    int mx = 1e6;
    mes(ispri, 1);
    tol = 0;
    phi[1] = 1;
    for(int i=2; i<=mx; i++) {
        if(ispri[i]) {
            pri[++tol] = i;
            phi[i] = i-1;
        }
        for(int j=1; j<=tol&&i*pri[j]<=mx; j++) {
            ispri[i*pri[j]] = 0;
            if(i%pri[j] == 0) {
                phi[i*pri[j]] = phi[i]*pri[j];
                break;
            } else {
                phi[i*pri[j]] = phi[i]*(pri[j]-1);
            }
        }
    }
}

int main() {
    // freopen("in", "r", stdin);
    handle();
    inv[1] = 1;
    scanf("%d", &T);
    while(T--) {
        ll p;
        scanf("%lld%lld%lld", &n, &m, &p);
        ll x = min(n, m);
        for(int i=2; i<=x; i++) inv[i] = (p-p/i)*inv[p%i]%p;
        for(int i=1; i<=x; i++) f[i] = (n/i)*(m/i)%p;
        for(int i=x; i>=1; i--) {
            g[i] = f[i];
            for(int j=2; i*j<=x; j++) {
                g[i] -= g[i*j];
                if(g[i]<0)  g[i]+=p;
            }
        }
        ll ans = 0;
        for(int i=1; i<=x; i++) {
            ans += 1ll*g[i]*i%p * inv[phi[i]]%p;
            ans %= p;
        }
        printf("%lld\n", ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Jiaaaaaaaqi/p/11423331.html

时间: 2024-11-10 03:20:24

GuGuFishtion HDU - 6390 (欧拉函数,容斥)的相关文章

hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不会 就自己写了个容斥搞一下(才能维持现在的生活) //别人的题解https://blog.csdn.net/luyehao1/article/details/81672837 #include <iostream> #include <cstdio> #include <cstr

hdu 1695 GCD 欧拉函数+容斥

题意:给定a,b,c,d,k x属于[1 , c],y属于[1 , d],求满足gcd(x,y)=k的对数.其中<x,y>和<y,x>算相同. 思路:不妨设c<d,x<=y.问题可以转化为x属于[1,c / k ],y属于[1,d/k ],x和y互质的对数. 那么假如y<=c/k,那么对数就是y从1到c/k欧拉函数的和.如果y>c/k,就只能从[ c/k+1 , d ]枚举,然后利用容斥.详见代码: /****************************

HDU 1695 GCD 欧拉函数+容斥定理

输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和1到d/k 2个区间 如果第一个区间小于第二个区间 讲第二个区间分成2部分来做1-b/k 和 b/k+1-d/k 第一部分对于每一个数i 和他互质的数就是这个数的欧拉函数值 全部数的欧拉函数的和就是答案 第二部分能够用全部数减去不互质的数 对于一个数i 分解因子和他不互质的数包括他的若干个因子 这个

hdu1695(莫比乌斯)或欧拉函数+容斥

题意:求1-b和1-d之内各选一个数组成数对,问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个可以简化成1-b/k 和1-d/k 的互质有序数对的个数.假设b=b/k,d=d/k,b<=d.欧拉函数可以算出1-b与1-b之内的互质对数,然后在b+1到d的数i,求每个i在1-b之间有多少互质的数.解法是容斥,getans函数参数的意义:1-tool中含有rem位置之后的i的质因子的数的个数. 在 for(int j=rem;j<=factor[i

HDU1695-GCD(数论-欧拉函数-容斥)

GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5454    Accepted Submission(s): 1957 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y

HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd(a_1,a_2,a_3…a_n)=d$,显然每个$a_i$的倍数都满足,有$\frac{a_i}{d}$种方案 那么一个d对答案的贡献为\[\prod_{i=1}^{min(a)}{\lfloor\frac{a_i}{d}\rfloor}    \] 但是所有的d计入会有重复情况,考虑容斥,对d进行素数分

hdu 3307(欧拉函数+好题)

Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1071    Accepted Submission(s): 323 Problem Description an = X*an-1 + Y and Y mod (X-1) = 0.Your task is to cal

HDU 1286 欧拉函数。

[科普]什么是BestCoder?如何参加? 找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 8077    Accepted Submission(s): 4250 Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是

hdu 4983(欧拉函数)

Goffi and GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 992    Accepted Submission(s): 336 Problem Description Goffi is doing his math homework and he finds an equality on his text book: g

hdu 2824(欧拉函数)

The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5235    Accepted Submission(s): 2225 Problem Description The Euler function phi is an important kind of function in number theo