悬线法——有套路的DP

例题 P1169 [ZJOI2007]棋盘制作

题目描述

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8×88 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。

而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。

小Q找到了一张由N×MN \times MN×M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。

不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。

于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

输入输出格式

输入格式:

包含两个整数NNN和MMM,分别表示矩形纸片的长和宽。接下来的NNN行包含一个N ×MN \ \times MN ×M的010101矩阵,表示这张矩形纸片的颜色(000表示白色,111表示黑色)。

输出格式:

包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

审题可以发现,我们所以寻找的最大矩形其实已经含有正方形,所以不需要单独去寻找,但是当时我只想到如何DP求正方形,所以分开写了;

这里就引进一个概念——悬线法

用途:

  求满足条件的最大矩形或正方形

方法:

  通过不断更新矩形左右端点所能到达的距离(1 : 初始化;2:dp中更新)

定义:

  left [ i ] [ j ] 数组更新包含第(i,j)点的最左能到达距离;

  right [ i ] [ j ] 数组更新包含第(i,j)点的最右能到达距离;

  up [ i ] [ j ] 数组更新包含第(i,j)点的向上能到达的距离;

  PS:为什么没有下?因为down可以在dp中用up代替;

步骤:

  1:初始化 left 和 right 数组

  

for(int i=1;i<=n;i++){
        for(int j=m-1;j>0;j--){
            if(maps[i][j]!=maps[i][j+1])//判断条件
                right[i][j]=right[i][j+1];
        }//右端点从右往左更新
        for(int j=2;j<=m;j++){
            if(maps[i][j-1]!=maps[i][j])
                left[i][j]=left[i][j-1];
        }//左端点从左往右更新
    }

  2:DP更新 up 数组和 left,right 数组

  for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(i!=1&&maps[i][j]!=maps[i-1][j]){
                left[i][j]=max(left[i][j],left[i-1][j]);//由上更新
                right[i][j]=min(right[i][j],right[i-1][j]);
                //左取大,右取小
                up[i][j]=up[i-1][j]+1;
            }
            int a=right[i][j]-left[i][j]+1;
            int b=min(a,up[i][j]);
            ans1=max(ans1,b*b);//正方形做法2
            ans2=max(ans2,a*up[i][j]);
        }
    }

  思考:该方法的正确性,因为每个点都取到了一次,每次选取最优解,则正解定会取到

完整Code(附有正方形另类做法)

#include<cstdio>
#define maxn 2007
using namespace std;
int n,m,maps[maxn][maxn],ans1;
int f1[maxn][maxn],ans2,up[maxn][maxn];
int left[maxn][maxn],right[maxn][maxn];
int min(int a,int b){return a<b?a:b;}
int max(int a,int b){return a>b?a:b;}

void cube(){
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            int x=maps[i][j];
            if(x==maps[i-1][j]||x==maps[i][j-1]||x!=maps[i][j]){
                f1[i][j]=1;
            }else {
                f1[i][j]=min(f1[i-1][j],min(f1[i][j-1],f1[i-1][j-1]))+1;
            }
            ans1=max(f1[i][j],ans1);
        }
    }
    ans1*=ans1;
}

int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&maps[i][j]);
            left[i][j]=j,right[i][j]=j;
            up[i][j]=1;
        }
    }
    cube();//正方形的做法1
    for(int i=1;i<=n;i++){
        for(int j=m-1;j>0;j--){
            if(maps[i][j]!=maps[i][j+1])//判断条件
                right[i][j]=right[i][j+1];
        }//右端点从右往左更新
        for(int j=2;j<=m;j++){
            if(maps[i][j-1]!=maps[i][j])
                left[i][j]=left[i][j-1];
        }//左端点从左往右更新
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(i!=1&&maps[i][j]!=maps[i-1][j]){
                left[i][j]=max(left[i][j],left[i-1][j]);//由上更新
                right[i][j]=min(right[i][j],right[i-1][j]);
                //左取大,右取小
                up[i][j]=up[i-1][j]+1;
            }
            int a=right[i][j]-left[i][j]+1;
            int b=min(a,up[i][j]);
            ans1=max(ans1,b*b);//正方形做法2
            ans2=max(ans2,a*up[i][j]);
        }
    }
    printf("%d\n%d\n",ans1,ans2);
    return 0;
}

总结与反思;正确灵活使用,可以快速解决问题;

原文地址:https://www.cnblogs.com/waterflower/p/11235591.html

时间: 2024-11-07 12:58:29

悬线法——有套路的DP的相关文章

BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳.而我们的主人公小Q,正是国际象棋的狂热爱好者.作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则.小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一.小Q想在这种纸中裁减

BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) + 1 (假如(i, j)和右边和下边不冲突) 第二问就是经典的悬线法解决最大子矩阵了, 维护悬线H[i][j], 左边右边延伸的最长距离.先一行一行求出这一行的L, R, 然后再从上往下扫, 维护H, L, R 写完我才发现我脑残了...最大的正方形一定是在最大子矩阵里面啊...所以其实不用dp.

【bzoj1057】【ZJOI2007】【棋盘制作】【悬线法+dp】

Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳.而我们的主人公小Q,正是国际象棋的狂热爱好者.作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则.小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一.小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可

bzoj1057: [ZJOI2007]棋盘制作(悬线法)

题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> using namespace std; const int maxn=2010,inf=1e9; int n,m,ans1,ans2; int h[maxn],mp[max

BZOJ_3039_玉蟾宫_(动态规划+悬线法)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3039 n*m的矩阵由R和F组成,求全是F的子矩阵的大小的三倍. 分析 悬线法: 浅谈用极大化思想解决最大子矩形问题--王知昆 l[x][y]表示点(x,y)在它那一行最多能扩展到左边的位置. r[x][y]表示点(x,y)在它那一行最多能扩展到右边的位置. 每一行分别预处理l与r. 在做dp的时候:如果点(x,y)可以取,那么h[x][y]=h[x-1][y]+1,l[x][y]=max(l

悬线法刷题记录

最近学习了悬线法,用极大化思想解决最大子矩阵问题,一种dp问题,留个记录…… 讲的特别好的一个博客:极大化思想解决最大子矩阵问题 例题: P1169 [ZJOI2007]棋盘制作 代码如下: 1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cstring> 5 #include <vector> 6 #define rep(x, l, r)

Codevs 1159 最大全0子矩阵 悬线法!!!!

1159 最大全0子矩阵 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在一个0,1方阵中找出其中最大的全0子矩阵,所谓最大是指O的个数最多. 输入描述 Input Description 输入文件第一行为整数N,其中1<=N<=2000,为方阵的大小,紧接着N行每行均有N个0或1,相邻两数间严格用一个空格隔开. 输出描述 Output Description 输出文件仅一行包含一个整数表示要求的最大的全零子矩阵中零的个数.

BZOJ 3039 玉蟾宫 悬线法

题目大意:给出一张地图,求出这张地图中最大的子矩阵,使得这个子矩阵不包含字母'R'. 思路:简单的悬线法求最大子矩阵,还是不带权值的,很好求.好久没写悬线了,复习一下. CODE: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 1010 using namespace std; int m,n; bool map[MAX][M

【BZOJ-3039&amp;1057】玉蟾宫&amp;棋盘制作 悬线法

3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地.这片土地被分成N*M个格子,每个格子里写着'R'或者'F',R代表这块土地被赐予了rainbow,F代表这块土地被赐予了freda.现在freda要在这里卖