波士顿房价数据集

机器学习:波士顿房价数据集
波士顿房价数据集(Boston House Price Dataset)(下载地址:http://t.cn/RfHTAgY)

使用sklearn.datasets.load_boston即可加载相关数据。

from sklearn.datasets import load_boston

该数据集是一个回归问题。每个类的观察值数量是均等的,共有 506 个观察,13 个输入变量和1个输出变量。

每条数据包含房屋以及房屋周围的详细信息。

CRIM:城镇人均犯罪率;              ZN:住宅用地超过 25000 sq.ft. 的比例;

INDUS:城镇非零售商用土地的比例;       CHAS:查理斯河空变量(如果边界是河流,则为1;否则为0);

NOX:一氧化氮浓度;              RM:住宅平均房间数;

AGE:1940 年之前建成的自用房屋比例;      DIS:到波士顿五个中心区域的加权距离;

RAD:辐射性公路的接近指数;          TAX:每 10000 美元的全值财产税率;

PTRATIO:城镇师生比例;            B:1000(Bk-0.63)^ 2,其中 Bk 指代城镇中黑人的比例。

LSTAT:人口中地位低下者的比例。

        

MEDV:自住房的平均房价,以千美元计。

原文地址:https://www.cnblogs.com/shanger/p/12044255.html

时间: 2024-09-29 18:14:31

波士顿房价数据集的相关文章

波士顿房价处理

1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 1 from sklearn.datasets import load_boston 2 import matplotlib.pyplot as plt 3 from sklearn.linear_model im

02-08 多项式回归(波士顿房价预测)

目录 多项式回归(波士顿房价预测) 一.导入模块 二.获取数据 三.训练模型 3.1 报告决定系数 四.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 多项式回归(波士顿房价预测) 一.导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplot

02-07 多元线性回归(波士顿房价预测)

目录 多元线性回归(波士顿房价预测) 一.导入模块 二.获取数据 三.训练模型 四.可视化 五.均方误差测试 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 多元线性回归(波士顿房价预测) 一.导入模块 import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager im

线性回归预测波士顿房价

预测波士顿的房价,上次已经通过房间数目预测了房价,这次用多元线性回归预测. 根据之前推导的多元线性回归的参数 接下来是多元线性回归的代码实现 def LinearRegression_(x,y): np.array(x) np.array(y) a = (np.linalg.inv(x.T.dot(x))).dot(x.T).dot(y) 上次大致了解了得个feature的name.下面是‘ZN’和‘RM’的散点图(由于我比较懒所以只实现这两个) 我们可以看出每个特征的数据范围相差较大,为了加快

机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning 1 from sklearn.datasets import load_boston 2 from sklearn.cross_validation import train_test_split 3 from sklearn.preprocessing import StandardScaler 4 from sklearn.linear

机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: 1 from sklearn.datasets import load_boston 2 from sklearn.cross_validation import train_test_split 3 from sklearn.preprocessing import StandardScaler 4 from sklearn.tree import De

《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)

接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集和测试集. 2.使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以. 3.激活函数使用relu来引入非线性因子. 4.原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了. def learning_rate(epoch): if epoch < 200: re

【udacity】机器学习-波士顿房价预测小结

Evernote Export body,td { font-family: 微软雅黑; font-size: 10pt } 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内容,看看缺省值和数据的特征,主要是为了看到数据的特征,并且人肉分析一下特征值对目标值的大约影响,嗯,就是这样 然后开始划分数据,将数据分为两个部分,一个数据的特征值(features),一个是数据的目标值(

利用keras自带房价数据集进行房价预测

1 import numpy as np 2 from keras.datasets import boston_housing 3 from keras import layers 4 from keras import models 5 from keras import optimizers 6 from keras.utils.np_utils import to_categorical 7 import matplotlib.pyplot as plt 8 9 def main():