3直方图与二值化,图像梯度

1直方图

#直方图--增强对比度
def equalHist_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    dst = cv.equalizeHist(gray)
    cv.imshow("equalHist_demo", dst)

def clahe_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    clahe = cv.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
    dst = clahe.apply(gray)
    cv.imshow("clahe_demo", dst)
#直方图投影--视频跟踪


2二值化

#二值化
import cv2 as cv
import numpy as np

def threshold_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_BINARY|cv.THRESH_OTSU)#OTSU计算阈值
    print("threshold value %s"%ret)
    cv.imshow("binary", binary)

def local_threshold(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)
    cv.imshow("binary", binary)

def custom_threshold(image):#局部二值化
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    h, w = gray.shape[:2]
    m = np.reshape(gray, [1, w*h])
    mean = m.sum() / (w*h)
    print("mean : ", mean)
    ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
    cv.imshow("binary", binary)

print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("D:/vcprojects/images/test.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
custom_threshold(src)
cv.waitKey(0)

cv.destroyAllWindows()


3图像梯度

#图像梯度
def lapalian_demo(image):#拉普拉斯算子
    #dst = cv.Laplacian(image, cv.CV_32F)
    #lpls = cv.convertScaleAbs(dst)
    kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
    dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)
    lpls = cv.convertScaleAbs(dst)
    cv.imshow("lapalian_demo", lpls)

def sobel_demo(image):#soble算子
    grad_x = cv.Scharr(image, cv.CV_32F, 1, 0)
    grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)
    gradx = cv.convertScaleAbs(grad_x)
    grady = cv.convertScaleAbs(grad_y)
    cv.imshow("gradient-x", gradx)
    cv.imshow("gradient-y", grady)

    gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
    cv.imshow("gradient", gradxy)

原文地址:https://www.cnblogs.com/wml2018/p/12181670.html

时间: 2024-11-09 10:21:26

3直方图与二值化,图像梯度的相关文章

图像处理 基于Visual C++编程 学习笔记 (3)显示灰度图像和二值化图像

灰度图imggray 有了上面的基础,灰度图就相当简单了 彩色图转灰度方法: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数方法:Gray=(R*30+G*59+B*11)/100 3.移位方法:Gray =(R*28+G*151+B*77)>>8;  ??4.平均值法:Gray=(R+G+B)/3; 5.仅取绿色:Gray=G: 这里使用浮点算法 void imggray::showgray(CDC *pDC, CRect rc) { ReadBitData();

opencv 删除二值化图像中面积较小的连通域

对于上图的二值化图像,要去除左下角和右上角的噪点,方法:使用opencv去掉黑色面积较小的连通域. 代码 CvSeq* contour = NULL; double minarea = 100.0; double tmparea = 0.0; CFileDialog dlg(true); if (dlg.DoModal()==IDOK) { CvMemStorage* storage = cvCreateMemStorage(0); IplImage* img_src= cvLoadImage(

ComicEnhancerPro 系列教程十七:二值化图像去毛刺

作者:马健邮箱:[email protected] 主页:http://www.comicer.com/stronghorse/ 发布:2017.07.23 教程十七:二值化图像去毛刺 在灰度图像处理成纯黑白(二值化)图像以后,经常出现的一个问题是轮廓边缘出现毛刺.如下面这个图像: 为了看得更清楚,放大到800%并加网格线: 可以看出在"工"字的上面一横中,上边缘有几个突出点,下边缘有两个凹陷点,而在"业"字左侧竖条中有突出点,下面一横中有凹陷点. 产生毛刺的原因是

c# 内存法二值化图像

之前在网上看的一些方法都是通过指针来操作的,下面这个方法是通过c#内存操作的 保存下来,方便以后自己查看 1 private static Bitmap PBinary(Bitmap src, int v) 2 { 3 int w = src.Width; 4 int h = src.Height; 5 Bitmap dstBitmap = new Bitmap(src.Width, src.Height, System.Drawing.Imaging.PixelFormat.Format24b

图像灰度变换、二值化、直方图

1.灰度变换 1)灰度图的线性变换 Gnew = Fa * Gold + Fb. Fa为斜线的斜率,Fb为y轴上的截距. Fa>1 输出图像的对比度变大,否则变小. Fa=1 Fb≠0时,图像的灰度上移或下移,效果为图像变亮或变暗. Fa=-1,Fb=255时,发生图像反转. 注意:线性变换会出现亮度饱和而丢失细节. 2)对数变换 t=c * log(1+s) c为变换尺度,s为源灰度,t为变换后的灰度. 对数变换自变量低时曲线斜率高,自变量大时斜率小.所以会放大图像较暗的部分,压缩较亮的部分.

记录一个优秀的图像二值化代码

#region 二值化02 public Bitmap binaryzation(Bitmap srcBitmap, Bitmap dstBitmap) { int threshold = 0; Byte[,] BinaryArray = ToBinaryArray(srcBitmap, out threshold); dstBitmap = BinaryArrayToBinaryBitmap(BinaryArray); return dstBitmap; } /// <summary> //

C# 指针操作图像 二值化处理

/// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param> /// <returns></returns> private static unsafe Bitmap Binaryzation(Bitmap bmp) { BitmapData dstData = bmp.LockBits(new Rectangle(0, 0, bmp.W

[转载+原创]Emgu CV on C# (四) —— Emgu CV on 二值化

重点介绍了二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可以不

基于opencv的视频流 模板匹配 (灰度化 二值化 )

#include <cv.h> #include <highgui.h> #include <windows.h> // 获取直方图 // 1. pImageData 图像数据 // 2. nWidth 图像宽度 // 3. nHeight 图像高度 // 4. nWidthStep 图像行大小 // 5. pHistogram 直方图 BOOL GetHistogram(unsigned char *pImageData, int nWidth, int nHeigh