Java数据结构漫谈-Stack

Stack(栈)是一种比较典型的数据结构,其元素满足后进先出(LIFO)的特点。

Java中Stack的实现继承自Vector,所以其天然的具有了一些Vector的特点,所以栈也是线程安全的。

class Stack<E> extends Vector<E> {

事实上,除了继承自Vector的那些方法之外,Stack只提供了5个方法:

    public E push(E item) {
        addElement(item);

        return item;
    }

    public synchronized E pop() {
        E       obj;
        int     len = size();

        obj = peek();
        removeElementAt(len - 1);

        return obj;
    }

    public synchronized E peek() {
        int     len = size();

        if (len == 0)
            throw new EmptyStackException();
        return elementAt(len - 1);
    }

    public boolean empty() {
        return size() == 0;
    }

    public synchronized int search(Object o) {
        int i = lastIndexOf(o);

        if (i >= 0) {
            return size() - i;
        }
        return -1;
    }

push函数是用来向Stack的顶部压入一个元素,影响其性能的是 addElement的性能:

    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }

可以看出,其方法是在Vector的最后加入一个元素,其时间复杂度是o(1)。

peek函数是从查看栈顶元素,但是不删除。其性能主要是由Vector的elementAt函数决定的:

    public synchronized E elementAt(int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }

        return elementData(index);
    }

    E elementData(int index) {
        return (E) elementData[index];
    }

由于Vector的底层是数组实现的,通过下标可以直接进行定位,所以peek的时间复杂度也是o(1)。

pop函数是移除并获取到栈顶元素,在源码中可以看到,这里调用peek获取了栈顶元素,使用removeElementAt来删除栈顶元素,这个函数也正是决定pop性能的关键:

    public synchronized void removeElementAt(int index) {
        modCount++;
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;
        elementData[elementCount] = null; /* to let gc do its work */
    }

咋一看来,这里删除一个元素之后,都会对数组中的元素进行复制调整,时间复杂度是o(n),但是考虑到传进来的index值的特殊性:

index = elementCount -1;

这样的话if(j>0)的条件永远都不会成立,因为j永远都是0,中间复制调整元素的操作就避免了,仅仅是在最后把Vector最后的值赋值为null,时间复杂度是o(1)。

search是查找一个元素在Stack中的index,这里起作用的是Vector的lastIndexOf函数,代码如下:

    public synchronized int lastIndexOf(Object o) {
        return lastIndexOf(o, elementCount-1);
    }

    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

        if (o == null) {
            for (int i = index; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

可以看出,查找的过程是从后向前,挨个比较,其时间复杂度必然是o(n)。

Stack是Vector的子类,所以Vector的函数这里也适用,这里不再赘述,在Vector相关的介绍文章中会有。

Stack是线程安全的,所以其性能必然受到影响,如果需要使用一个非线程安全的Stack,可以直接使用LinkedList,LinkedList本身提供的方法就包含了Stack的操作。

时间: 2024-10-13 13:08:15

Java数据结构漫谈-Stack的相关文章

Java数据结构漫谈-ArrayList

ArrayList是一个基于数组实现的链表(List),这一点可以从源码中看出: transient Object[] elementData; // non-private to simplify nested class access 可以看出ArrayList的内部是给予数组来处理的. 从ArrayList中查找一个元素的index,其时间复杂度是o(n),其源码如下所示: public int indexOf(Object o) { if (o == null) { for (int i

Java数据结构漫谈-LinkedList

同样是List的数据结构,LinkedList是使用了前后指针,指明节点的方式来表示链表的,这与之前介绍的ArrayList http://www.cnblogs.com/yakovchang/p/java_arraylist.html 中使用数组的方式是截然不同的.LinkedList中的存储节点被称作节点(Node),一个节点的定义如下所示: private static class Node<E> { E item; Node<E> next; Node<E> p

java数据结构与算法之栈(Stack)设计与实现

[版权申明]转载请注明出处(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/53362993 出自[zejian的博客] 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) java数据结构与算法之栈设计与实现 ??本篇是jav

Java数据结构与算法之集合

线性表.链表.哈希表是常用的数据结构,在进行Java开发时,SDK已经为我们提供了一系列相应的类来实现基本的数据结构.这些类均在java.util包中. 一.Collection接口 Collection是最基本的集合接口,一个Collection代表一组Object.一些Collection允许相同元素而另一些不行.一些能排序而另一些不行.Java  SDK不提供直接继承自Collection的类,Java  SDK提供的类都是继承自Collection的"子接口"如List和Set

Java数据结构和算法之栈与队列

二.栈与队列 1.栈的定义 栈(Stack)是限制仅在表的一端进行插入和删除运算的线性表. (1)通常称插入.删除的这一端为栈顶(Top),另一端称为栈底(Bottom). (2)当表中没有元素时称为空栈. (3)栈为后进先出(Last In First Out)的线性表,简称为LIFO表. 栈的修改是按后进先出的原则进行. 每次删除(退栈)的总是当前栈中"最新"的元素,即最后插入(进栈)的元素,而最先插入的是被放在栈的底部,要到最后才能删除. 图1 [示例]元素是以a1,a2,-,a

java数据结构与算法之平衡二叉树(AVL树)的设计与实现

[版权申明]未经博主同意,不允许转载!(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/53892797 出自[zejian的博客] 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) java数据结构与算法之栈(Stack)设

java数据结构与算法之树基本概念及二叉树(BinaryTree)的设计与实现

[版权申明]未经博主同意,不允许转载!(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/53727333 出自[zejian的博客] 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) java数据结构与算法之栈(Stack)设

java数据结构与算法之递归思维(让我们更通俗地理解递归)

[版权申明]转载请注明出处(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/53452971 出自[zejian的博客] 关联文章: java数据结构与算法之顺序表与链表设计与实现分析 java数据结构与算法之双链表设计与实现 java数据结构与算法之改良顺序表与双链表类似ArrayList和LinkedList(带Iterator迭代器与fast-fail机制) java数据结构与算法之栈(Stack)设计与实现 j

java 数据结构 栈的实现

java数据结构之栈的实现,可是入栈,出栈操作: /** * java数据结构之栈的实现 * 2016/4/26 **/ package cn.Link; public class Stack{ Node tail = new Node(); Node nowNode = new Node(); //永远指向栈顶 int size; Stack(){}; Stack(String date){ this.tail.date = date; this.tail.next = null; this.