转 浅谈算法和数据结构: 十 平衡查找树之B树

前面讲解了平衡查找树中的2-3树以及其实现红黑树。2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key。

维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库文件系统。”

定义

B 树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。

  • 根节点至少有两个子节点
  • 每个节点有M-1个key,并且以升序排列
  • 位于M-1和M key的子节点的值位于M-1 和M key对应的Value之间
  • 其它节点至少有M/2个子节点

下图是一个M=4 阶的B树:

可以看到B树是2-3树的一种扩展,他允许一个节点有多于2个的元素。

B树的插入及平衡化操作和2-3树很相似,这里就不介绍了。下面是往B树中依次插入

6 10 4 14 5 11 15 3 2 12 1 7 8 8 6 3 6 21 5 15 15 6 32 23 45 65 7 8 6 5 4

的演示动画:

B+树是对B树的一种变形树,它与B树的差异在于:

  • 有k个子结点的结点必然有k个关键码;
  • 非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
  • 树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录。

如下图,是一个B+树:

下图是B+树的插入动画:

B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。

B+ 树的优点在于:

  • 由于B+树在内部节点上不好含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子几点上关联的数据也具有更好的缓存命中率。
  • B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。

但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。下面是B 树和B+树的区别图:

分析

对B树和B+树的分析和对前面讲解的2-3树的分析类似,

对于一颗节点为N度为M的子树,查找和插入需要logM-1N ~ logM/2N次比较。这个很好证明,对于度为M的B树,每一个节点的子节点个数为M/2 到 M-1之间,所以树的高度在logM-1N至logM/2N之间。

这种效率是很高的,对于N=62*1000000000个节点,如果度为1024,则logM/2N <=4,即在620亿个元素中,如果这棵树的度为1024,则只需要小于4次即可定位到该节点,然后再采用二分查找即可找到要找的值。

应用

B树和B+广泛应用于文件存储系统以及数据库系统中,在讲解应用之前,我们看一下常见的存储结构:

我们计算机的主存基本都是随机访问存储器(Random-Access Memory,RAM),他分为两类:静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)。SRAM比DRAM快,但是也贵的多,一般作为CPU的高速缓存,DRAM通常作为内存。这类存储器他们的结构和存储原理比较复杂,基本是使用电信号来保存信息的,不存在机器操作,所以访问速度非常快,具体的访问原理可以查看CSAPP,另外,他们是易失的,即如果断电,保存DRAM和SRAM保存的信息就会丢失。

我们使用的更多的是使用磁盘,磁盘能够保存大量的数据,从GB一直到TB级,但是 他的读取速度比较慢,因为涉及到机器操作,读取速度为毫秒级,从DRAM读速度比从磁盘度快10万倍,从SRAM读速度比从磁盘读快100万倍。下面来看下磁盘的结构:

如上图,磁盘由盘片构成,每个盘片有两面,又称为盘面(Surface),这些盘面覆盖有磁性材料。盘片中央有一个可以旋转的主轴(spindle),他使得盘片以固定的旋转速率旋转,通常是5400转每分钟(Revolution Per Minute,RPM)或者是7200RPM。磁盘包含一个多多个这样的盘片并封装在一个密封的容器内。上图左,展示了一个典型的磁盘表面结构。每个表面是由一组成为磁道(track)的同心圆组成的,每个磁道被划分为了一组扇区(sector).每个扇区包含相等数量的数据位,通常是(512)子节。扇区之间由一些间隔(gap)隔开,不存储数据。

以上是磁盘的物理结构,现在来看下磁盘的读写操作:

如上图,磁盘用读/写头来读写存储在磁性表面的位,而读写头连接到一个传动臂的一端。通过沿着半径轴前后移动传动臂,驱动器可以将读写头定位到任何磁道上,这称之为寻道操作。一旦定位到磁道后,盘片转动,磁道上的每个位经过磁头时,读写磁头就可以感知到位的值,也可以修改值。对磁盘的访问时间分为 寻道时间旋转时间,以及传送时间

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,因此为了提高效率,要尽量减少磁盘I/O,减少读写操作。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用。

程序运行期间所需要的数据通常比较集中。

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:

每次新建一个节点的同时,直接申请一个页的空间( 512或者1024),这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。如,将B树的度M设置为1024,这样在前面的例子中,600亿个元素中只需要小于4次查找即可定位到某一存储位置。

同时在B+树中,内节点只存储导航用到的key,并不存储具体值,这样内节点个数较少,能够全部读取到主存中,外接点存储key及值,并且顺序排列,具有良好的空间局部性。所以B及B+树比较适合与文件系统的数据结构。下面是一颗B树,用来进行内容存储。

另外B/B+树也经常用做数据库的索引,这方面推荐您直接看张洋的MySQL索引背后的数据结构及算法原理 这篇文章,这篇文章对MySQL中的如何使用B+树进行索引有比较详细的介绍,推荐阅读。

总结

在前面两篇文章介绍了平衡查找树中的2-3树红黑树之后,本文介绍了文件系统和数据库系统中常用的B/B+ 树,他通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。他广泛用于文件系统及数据库中,如:

  • Windows:HPFS文件系统
  • Mac:HFS,HFS+文件系统
  • Linux:ResiserFS,XFS,Ext3FS,JFS文件系统
  • 数据库:ORACLE,MYSQL,SQLSERVER等中

希望本文对您了解B/B+ 树有所帮助。

时间: 2024-12-26 18:55:20

转 浅谈算法和数据结构: 十 平衡查找树之B树的相关文章

浅谈算法和数据结构: 十 平衡查找树之B树

转载自 http://www.cnblogs.com/yangecnu/p/3632027.html 浅谈算法和数据结构: 十 平衡查找树之B树 前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据.对其进行排序并允许以O(log n)的时间复杂度运行进行查找.顺序读取.插入和删除的数据结构.B树,概括来说是一个节点可以拥

浅谈算法和数据结构: 九 平衡查找树之红黑树

原文:浅谈算法和数据结构: 九 平衡查找树之红黑树 前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.红黑树中将节点之间的链接分为两种不同类型,

【转】浅谈算法和数据结构: 九 平衡查找树之红黑树

http://www.cnblogs.com/yangecnu/p/3627386.html 前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.

[转]浅谈算法和数据结构: 八 平衡查找树之2-3树

前面介绍了二叉查找树(Binary Search Tree),他对于大多数情况下的查找和插入在效率上来说是没有问题的,但是他在最差的情况下效率比较低.本文及后面文章介绍的平衡查找树的数据结构能够保证在最差的情况下也能达到lgN的效率,要实现这一目标我们需要保证树在插入完成之后始终保持平衡状态,这就是平衡查找树(Balanced Search Tree).在一棵具有N 个节点的树中,我们希望该树的高度能够维持在lgN左右,这样我们就能保证只需要lgN次比较操作就可以查找到想要的值.不幸的是,每次插

浅谈算法和数据结构: 十二 无向图相关算法基础

从这篇文章开始介绍图相关的算法,这也是Algorithms在线课程第二部分的第一次课程笔记. 图的应用很广泛,也有很多非常有用的算法,当然也有很多待解决的问题,根据性质,图可以分为无向图和有向图.本文先介绍无向图,后文再介绍有向图. 之所以要研究图,是因为图在生活中应用比较广泛: 无向图 图是若干个顶点(Vertices)和边(Edges)相互连接组成的.边仅由两个顶点连接,并且没有方向的图称为无向图. 在研究图之前,有一些定义需要明确,下图中表示了图的一些基本属性的含义,这里就不多说明. 图的

浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B

浅谈算法和数据结构系列汇总(转)

突然看到一个大神的系列文章讲的就是算法和数据结构,现在把它的文章集中分享给大家,向大神致敬: 浅谈算法和数据结构: 一 栈和队列 浅谈算法和数据结构: 二 基本排序算法 浅谈算法和数据结构: 三 合并排序 浅谈算法和数据结构: 四 快速排序 浅谈算法和数据结构: 五 优先级队列与堆排序 浅谈算法和数据结构: 六 符号表及其基本实现 浅谈算法和数据结构: 七 二叉查找树 浅谈算法和数据结构: 八 平衡查找树之2-3树 浅谈算法和数据结构: 九 平衡查找树之红黑树 浅谈算法和数据结构: 十 平衡查找

浅谈算法和数据结构: 四 快速排序

原文:浅谈算法和数据结构: 四 快速排序 上篇文章介绍了时间复杂度为O(nlgn)的合并排序,本篇文章介绍时间复杂度同样为O(nlgn)但是排序速度比合并排序更快的快速排序(Quick Sort). 快速排序是20世纪科技领域的十大算法之一 ,他由C. A. R. Hoare于1960年提出的一种划分交换排序. 快速排序也是一种采用分治法解决问题的一个典型应用.在很多编程语言中,对数组,列表进行的非稳定排序在内部实现中都使用的是快速排序.而且快速排序在面试中经常会遇到. 本文首先介绍快速排序的思

浅谈算法和数据结构: 六 符号表及其基本实现

http://www.cnblogs.com/yangecnu/p/Introduce-Symbol-Table-and-Elementary-Implementations.html 浅谈算法和数据结构: 六 符号表及其基本实现 前面几篇文章介绍了基本的排序算法,排序通常是查找的前奏操作.从本文开始介绍基本的查找算法. 在介绍查找算法,首先需要了解符号表这一抽象数据结构,本文首先介绍了什么是符号表,以及这一抽象数据结构的的API,然后介绍了两种简单的符号表的实现方式. 一符号表 在开始介绍查找