FFT —— 快速傅里叶变换

问题:

  已知A[], B[], 求C[],使:

    

  定义C是A,B的卷积,例如多项式乘法等。

  朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2).

  能不能使时间复杂度降下来呢?

点值表示法:

  我们把A,B,C看作表达式。

  即:

    A(x)=a+ a1* x + a2 * x2 +...

  将A={(x1,A(x1)), (x2,A(x2)), (x3,A(x3))...}叫做A的点值表示法。

  那么使用点值表示法做多项式乘法就很简单了:对应项相乘。

  那么,如何将A和B转换成点值表示法,再将C转化回系数表示法(即最初的表示方法)呢?

  如果任取n个点,按照定义计算,那么还是O(n2)的。

  这样就要用到快速傅里叶变换。

快速傅里叶变换:

  既然任取n个点,按照定义计算太慢,就要找一些特殊点。

  我们用n个n次单位复数根(1的n次方根,涉及到复数,1的方根不止1和-1)来计算:

    1的n次方根是,其中i是虚数单位。

  我们定义wn = e^(2∏i)是主n次单位根,那么所有n次单位复数根都是它的次方。

  我们要求出A(wnk),就要采用分治思想。

  我们将奇偶系数分离(先假设n为偶数),即定义

      A1(x)=a+ a2* x + a4 * x2 +...

      A2(x)=a+ a3* x + a5 * x2 +...

  那么A(x)=A1(x2) + xA2(x2)。

  要计算A(wnk)=A1((wnk)2) + wnkA2((wnk)2),

  就要用到(wnk)2 = wn/2k mod (n / 2)(证略)。

  所以A(wnk)=A1(wn/2k mod (n / 2)) + wnkA2(wn/2k mod (n / 2))

  我们发现A1,A2都是n/2项的,且只需要算wn/2k的值,那么这就和开始的问题一样了,可以分治。

  边界也很容易:n=1的时候A1本身就是值。

  合并解。

  A(wnk)=A1(wn/2k mod (n / 2)) + wnkA2(wn/2k mod (n / 2))

  那么可以A(wnk)和A(wnk+n/2)一起算(0<=k<n/2):

    设u = A1(wn/2k), t = wnkA2(wn/2k),

    那么A(wnk) = u + t

      A(wnk+n/2) = A1(wn/2k) + wnk + n/2 A2(wn/2k)

            = A1(wn/2k) + wnk  wnn/2 A2(wn/2k)

            = A1(wn/2k) - wnk A2(wn/2k)

            = u - t

  所以这样就能算出A的点值表示法。

  一个问题:分治要求n是2的幂,不是怎么办? 补0, 直到是2的幂。

  剩下的问题:如何把C转化回系数表示法。

快速傅里叶逆变换:

  我们把C做一遍快速傅立叶变换,只是求的是wnn, wnn-1, ..., wn1的值而不是wn0, wn1, ..., wnn-1的值,最后每一项除以n即可。

  证略。

 1 void Rader(complex y[],int len)
 2 {
 3     int i,j,k;
 4     for(i = 1, j = len/2;i < len-1;i++)
 5     {
 6         if(i < j)swap(y[i],y[j]);
 7         k = len/2;
 8         while( j >= k)
 9         {
10             j -= k;
11             k /= 2;
12         }
13         if(j < k)j += k;
14     }
15 }
16 void FFT(complex y[],int len,int on)  //on = 1 快速傅里叶变换, on = 0 快速傅里叶逆变换
17 {
18     Rader(y,len);
19     for(int h = 2;h <= len;h <<= 1)
20     {
21         complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));  //e^ki = cosk + isink
22         for(int j = 0;j < len;j += h)
23         {
24             complex w(1,0);
25             for(int k = j;k < j+h/2;k++)
26             {
27                 complex u = y[k];
28                 complex t = w*y[k+h/2];
29                 y[k] = u+t;
30                 y[k+h/2] = u-t;
31                 w = w*wn;
32             }
33         }
34     }
35     if(on == -1)
36         for(int i = 0;i < len;i++)
37             y[i].r /= len;
38 }39 //复数实现略
时间: 2024-10-24 18:33:19

FFT —— 快速傅里叶变换的相关文章

准零基础搞懂FFT快速傅里叶变换及其实现程序(二)

上一篇文章我们了解了DFT的原理,FFT是基于DFT的更适合计算机运算的算法,本文我们就正式开始学习FFT的原理. 首先我么先来宏观的看一下FFT.如果我们把整个FFT的算法看成一个黑盒子的话,那么它的输入就是时间波形信号,比如声音波形(横轴为时间,纵轴为振幅).外什么FFT要比DFT速度更快呢?下面(图1)解释了FFT和DFT的(对于计算机的)算法复杂度 图1 从上面的数学表达式可以看出,一个1024采样点的FFT比DFT块了102.4倍.如果傅里叶变换的数量级更大,FFT的速度优势会更明显.

【Delphi】如何在三轴加速器的频谱分析中使用FFT(快速傅里叶变换)算法

关于傅里叶变换的作用,网上说的太过学术化,且都在说原理,已经如何编码实现,可能很多人有个模糊影响,在人工智能,图像识别,运动分析,机器学习等中,频谱分析成为了必备的手段,可将离散信号量转换为数字信息进行归类分析. 今天这里将的不是如何实现,而是如何使用傅里叶变换 但频谱分析中,涉及到的信号处理知识对大部分软件开发的人来说,太过于晦涩难懂,傅里叶变换,拉普拉斯,卷积,模相,实数,虚数,复数,三角函数等等,已经能让软件工程师望而却步,造成懂知识的人无法开发,懂开发的人无法分析,而同时具备两种技能的人

FFT快速傅里叶变换

摘自:https://www.cnblogs.com/RabbitHu/p/FFT.html 快速傅里叶变换(FFT)是一种能在O(nlogn)O(nlog?n)的时间内将一个多项式转换成它的点值表示的算法. 点值表示:设A(x)是一个n−1次多项式,那么把n个不同的x代入,会得到n个y.这n对(x,y)唯一确定了该多项.由多项式可以求出其点值表示,而由点值表示也可以求出多项式. 设有两个n−1次多项式A(x)和B(x)),我们的目标是——把它们乘起来.普通的多项式乘法是O(n^2),但有趣的是

【bzoj2179】FFT快速傅里叶变换(优化高精度乘法)

#include<bits/stdc++.h> using namespace std; #define pi acos(-1) typedef complex<double> C; const int N=201100; int n,m,l,r[N],ans[N]; C a[N],b[N]; char s[N],t[N]; void fft(C *a,int f){ for(int i=0;i<n;++i) if(r[i]>i) swap(a[i],a[r[i]]);

【模板】FFT快速傅里叶变换

1 struct Complex{ 2 double x, y; 3 inline Complex(double xx=0, double yy=0){ 4 x=xx; y=yy; 5 } 6 inline Complex operator + (Complex a){ 7 return Complex(x+a.x, y+a.y); 8 } 9 inline Complex operator - (Complex a){ 10 return Complex(x-a.x, y-a.y); 11 }

浅谈FFT(快速傅里叶变换)

本文主要简单写写自己学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详细. 为什么要学习FFT呢?因为FFT能将多项式乘法的时间复杂度由朴素的$O(n^2)$降到$O(nlogn)$,这相当于能将任意形如$f[k]=\sum\limits _{i+j=k}f[i]*f[j]$的转移方程的计算在$O(nlogn)$的时间内完成.因此对于想要进阶dp的同学来说,FFT是必须掌握的技能

FFT 快速傅里叶变换

这个东西很神奇,看了半天网上的解释和课件,研究了很长时间,算是大概明白了它的原理. 话不多说先上图. 我们要求的h(x)=f(x)*g(x),f(x)=Σai*x^i,g(x)=Σbi*x^i. 朴素求复杂度是n2的,但一个x次多项式在平面上可以由x+1个点唯一插值表示,所以我们可以先用求出x+1个点(xi,f(xi))和(xi,g(xi)),再求出(xi,f(xi)*g(xi)),就可以反解出    h(x)的表达式. 那么我们需要在nlogn的时间内干完这两步,首先xi的取值需要特殊取,令x

快速傅里叶变换FFT

快速傅里叶变换FFT DFT是信号分析与处理中的一种重要变换.但直接计算DFT的计算量与变换区间长度N的平方成正比,当N较大时,计算量太大,直接用DFT算法进行谱分析和信号的实时处理是不切实际的. 1.直接计算DFT 长度为N的有限长序列x(n)的DFT为: 2.减少运算量的思路和方法 思路:N点DFT的复乘次数等于N2.把N点DFT分解为几个较短的DFT,可使乘法次数大大减少.另外,旋转因子WmN具有周期性和对称性. (考虑x(n)为复数序列的一般情况,对某一个k值,直接按上式计算X(k)值需

快速傅里叶变换(FFT)算法【详解】

快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey  FFT 算法,解释作为其根源的“对称性”,并以一些直观的python代码将其理论转变为实际.我希望这次研究能对这个算法的背景原理有更全面的认识. FFT(快速傅里叶变换)本身就是离散傅里叶变换(Discrete