Unity3D - 详解Quaternion类(二)

OK,不做引子了,接上篇Unity3D - 详解Quaternion类(一)走起!

四、Quaternion类静态方法

Quaternion中的静态方法有9个即:Angle方法、Dot方法、Euler方法、FromToRotation方法、Inverse方法、Lerp方法、LookRotation方法、RotateToWards方法和Slerp方法。关于静态的方法的使用就是直接用类名调用其静态方法,例如Quaternion.Angle(q1,q2);下面对这些静态方法做下分析。

1、Angle方法

1.1 函数原型

public static float Angle(Quaternion a,Quaternion b);

该方法可以计算两个旋转状态a达到b时需要旋转的最小夹角。

1.2 实例演示

using UnityEngine;
using System.Collections;

public class Angle_ts : MonoBehaviour {

    // Use this for initialization
    void Start () {

        Quaternion q1 = Quaternion.identity;
        Quaternion q2 = Quaternion.identity;
        q1.eulerAngles = new Vector3(30.0f, 40.0f, 50.0f);
        float a1 = Quaternion.Angle(q1, q2);
        float a2 = 0.0f;
        Vector3 v = Vector3.zero;
        q1.ToAngleAxis(out a2,out v);

        Debug.Log("a1: " + a1);
        Debug.Log("a2: " + a2);
        Debug.Log("q1的欧拉角: " + q1.eulerAngles + " q1的rotation: " + q1);
        Debug.Log("q2的欧拉角: " + q2.eulerAngles + " q2的rotation: " + q2);
    }

    // Update is called once per frame
    void Update () {

    }
}

运行结果

从输出结果可以看出a1和a2的值相等,即Angle的返回值是两个Quaternion实例转换的最小夹角。

2、Dot方法-点乘

2.1 函数原型

public static float Dot(Quaternion a,Quaternion b);

该方法可以根据点乘的结果,判断a和b对应欧拉角的关系。

例如有两个Quaternion实例q1(x1,y1,z1,w1)和q2(x2,y2,z2,w2),则float f = Quaternion.Dot(q1,q2);即f = x1*x2+y1*y2+z1*z2+w1*w2,结果值f的范围为[-1,1]。

当f=+(-)1时,q1和q2对应的欧拉角是相等的,即旋转状态是一致的。特别地,当f = -1时,说明其中一个rotation比另外一个rotation多旋转了360°。

2.2 实例演示

using UnityEngine;
using System.Collections;

public class Dot_ts : MonoBehaviour {

    public Transform A, B;
    Quaternion q1 = Quaternion.identity;
    Quaternion q2 = Quaternion.identity;
    // Use this for initialization
    void Start () {

        A.eulerAngles = new Vector3(0.0f, 40.0f, 0.0f);
        B.eulerAngles = new Vector3(0.0f, 360.0f + 40.0f, 0.0f);
        q1 = A.rotation;
        q2 = B.rotation;
        float f = Quaternion.Dot(q1, q2);

        Debug.Log("q1的欧拉角: " + q1.eulerAngles + " q1的rotation: " + q1);
        Debug.Log("q2的欧拉角: " + q2.eulerAngles + " q2的rotation: " + q2);
        Debug.Log("Dot(q1,q2): " + f);
    }

    // Update is called once per frame
    void Update () {

    }
}

运行输出

从输出结果可以证明q1和q2的欧拉角相等,但是rotation值却是相反的,也说明当Dot的返回值为-1时,两个参数的角度相差360°。

3、Euler方法

3.1 函数原型

public static Quaternion Euler(Vector3 euler);
public static Quaternion Euler(float x,float y,float z);

该方法用于返回欧拉角Vector3(ex,ey,ez)对应的四元数Quaternion q(qx,qy,qz,qw)。其对应关系如下:

已知PIover180 = 3.141592/180 = 0.0174532925f是计算机图形学中的一个常亮,其变换过程如下:

ex = ex * PIover180 / 2.0f;
ey = ey * PIover180 / 2.0f;
ez = ez * PIover180 / 2.0f;

qx = Mathf.Sin(ex) * Mathf.Cos(ey) * Mathf.Cos(ez) + Mathf.Cos(ex) * Mathf.Sin(ey) * Mathf.Sin(ez);
qy = Mathf.Cos(ex) * Mathf.Sin(ey) * Mathf.Cos(ez) - Mathf.Sin(ex) * Mathf.Cos(ey) * Mathf.Sin(ez);
qz = Mathf.Cos(ex) * Mathf.Cos(ey) * Mathf.Sin(ez) - Mathf.Sin(ex) * Mathf.Sin(ey) * Mathf.Cos(ez);
qw = Mathf.Cos(ex) * Mathf.Cos(ey) * Mathf.Cos(ez) + Mathf.Sin(ex) * Mathf.Sin(ey) * Mathf.Sin(ez);

3.2 验证变换过程

using UnityEngine;
using System.Collections;

public class Euler_ts : MonoBehaviour {

    public float ex, ey, ez;
    float qx, qy, qz,qw;
    float PIover180 = 0.0174532925f;
    Quaternion q = Quaternion.identity;
    Vector3 euler;

    void OnGUI()
    {
        if(GUI.Button(new Rect(10.0f,10.0f,100.0f,45.0f),"计算"))
        {
            euler = new Vector3(ex,ey,ez);
            Debug.Log("欧拉角Euler(ex,ey,ez): " + euler);
            q = Quaternion.Euler(ex, ey, ez);
            Debug.Log("对应的四元数为: " + q);
            Debug.Log("q.x: " + q.x + " q.y: " + q.y + " q.z: " + q.z + " q.w: " + q.w);
            //验证算法
            ex = ex * PIover180 / 2.0f;
            ey = ey * PIover180 / 2.0f;
            ez = ez * PIover180 / 2.0f;

            qx = Mathf.Sin(ex) * Mathf.Cos(ey) * Mathf.Cos(ez) + Mathf.Cos(ex) * Mathf.Sin(ey) * Mathf.Sin(ez);
            qy = Mathf.Cos(ex) * Mathf.Sin(ey) * Mathf.Cos(ez) - Mathf.Sin(ex) * Mathf.Cos(ey) * Mathf.Sin(ez);
            qz = Mathf.Cos(ex) * Mathf.Cos(ey) * Mathf.Sin(ez) - Mathf.Sin(ex) * Mathf.Sin(ey) * Mathf.Cos(ez);
            qw = Mathf.Cos(ex) * Mathf.Cos(ey) * Mathf.Cos(ez) + Mathf.Sin(ex) * Mathf.Sin(ey) * Mathf.Sin(ez);
            Debug.Log("qx: " + qx + " qy: " + qy + " qz: " + qz + " qw: " + qw);
        }
    }
}

运行结果

从输出结果可以证明该公式是正确,另外转换后的四元数直接输出的话,如下:

 q = Quaternion.Euler(ex, ey, ez);
 Debug.Log("对应的四元数为: " + q);

输出值是做了四舍五入处理的。

4、FromToRotation方法

函数原型

public static Quaternion FromToRotation(Vector3 fromDirection,Vector3 ToDirection);

在前面介绍了SetFromToRotation实例方法,它们的功能都是一样的只不过用法稍有不同。使用FromToRotation类静态方法,需要直接使用类名进行调用,如Quaternion.FromToRotation(v1,v2);

在此就不做演示了!

5、Inverse方法

5.1 函数原型

public static Quaternion Inverse(Quaternion rotation);

该方法可以返回参数rotation的逆向Quaternion值。

例如rotation(x,y,z,w),那么Quaternion.Inverse(rotation) = (-x,-y,-z,w)。假设rotation的欧拉角为(a,b,c),则transform.rotation = Quaternion.Inverse(rotation)相当于transform依次绕自身坐标系的z轴、x轴和y轴分别旋转-c°、-a°和-z°。由于是在局部坐标系内的变换,最后transform的欧拉角的各个分量值并不一定等于-a、-b或-c。

5.2 实例演示

using UnityEngine;
using System.Collections;

public class Invers_ts : MonoBehaviour {
    public Transform A, B;

    // Use this for initialization
    void Start () {

        Quaternion q1 = Quaternion.identity;
        Quaternion q2 = Quaternion.identity;
        q1.eulerAngles = new Vector3(30.0f,40.0f,50.0f);
        q2 = Quaternion.Inverse(q1);
        A.rotation = q1;
        B.rotation = q2;

        Debug.Log("q1的欧拉角: " + q1.eulerAngles + "q1的rotation: " + q1);
        Debug.Log("q2的欧拉角: " + q2.eulerAngles + "q2的rotation: " + q2);
    }

    // Update is called once per frame
    void Update () {

    }
}

运行截图

6、Lerp和Slerp方法

6.1 函数原型

public static Quaternion Lerp(Quaternion form, Quaternion to,float t);
public static Quaternion Slerp(Quaternion form, Quaternion to,float t);

两种方法的作用都是返回从form到to的插值。当参数t<=0时返回值为from,当参数t>=1时返回值为to。其中Lerp是线性差值,而Slerp是球面插值。

6.2 实例演示

using UnityEngine;
using System.Collections;

public class LerpAndSlerp_ts : MonoBehaviour
{
    public Transform A, B, C,D;
    float speed = 0.2f;
    float total = 0.0f;
    // Use this for initialization
    void Start () {

    }

    // Update is called once per frame
    void Update () {
        total += Time.deltaTime * speed;
        if(total >= 1.0f)
            total = 1.0f;
        C.rotation = Quaternion.Lerp(A.rotation, B.rotation, total);
        D.rotation = Quaternion.Lerp(A.rotation, B.rotation, total);
        //C.rotation = Quaternion.Lerp(A.rotation, B.rotation, Time.deltaTime * speed);
        //D.rotation = Quaternion.Lerp(A.rotation, B.rotation, Time.deltaTime * speed);
    }
}

7、RotateTowards方法

7.1 函数原型

public static Quaternion RotateTowards(Quaternion from, Quaternion to, float maxDegreesDelta);

该方法也是一个插值方法,即从返回参数from到to的插值,且返回值的最大角度不超过maxDegreesDelta。maxDegreesDelta是角度值,不是插值系数,当maxDegreesDelta < 0时,将进行逆向插值即从to到from的方向进行插值计算。

7.2 实例演示

using UnityEngine;
using System.Collections;

public class RotateToWards_ts : MonoBehaviour {

    public Transform A, B, C;
    float speed = 10.0f;
    float total = 0.0f;
    // Use this for initialization
    void Start()
    {

    }

    // Update is called once per frame
    void Update()
    {
        total += Time.deltaTime * speed;
        if (total >= 1.0f)
            total = 1.0f;
        C.rotation = Quaternion.RotateTowards(A.rotation, B.rotation, Time.time * speed - 40.0f);
        Debug.Log("C与A的欧拉角的插值: " + (C.eulerAngles - A.eulerAngles) + "maxDegreesDelta: " + (Time.time * speed - 40.0f));

    }
}

运行截图

8、LookRotation方法

函数原型

public static Quaternion LookRotation(Vector3 forward);
public static Quaternion LookRotation(Vector3 forward,Vector3 upwards);

参数forward为返回Quaternion实例的forward朝向。该方法和前面讲到的SetLookRotation实例方法的功能是一样的,故不多做阐述了。

五、Quaternion类运算符

Quaternion类涉及到两个Quaternion对象相乘和Quaternion对象与Vector3对象相乘,那么就必须重载"*"运算符。

1、函数原型

public static Quaternion operator *(Quaternion lhs, Quaternion rhs);
public static Vector3 operator *(Quaternion rotation, Vector3 point);

2、两个Quaternion对象相乘

对于两个Quaternion对象相乘主要用于自身旋转变换,例如:

B.rotation *= A.rotation;
  • B会绕着B的局部坐标系的z、x、y轴按照先绕z轴再绕x轴最后绕y轴的旋转次序,分别旋转A.eulerAngles.z度、A.eulerAngles.x度、和A.eulerAngles.y度。由于是绕着局部坐标系进行旋转,所以当绕着其中一个轴进行旋转时,可能会影响其余两个坐标轴方向的欧拉角(除非其余两轴的欧拉角都为0才不会受到影响)。
  • 假如A的欧拉角为aEuler(ax,ay,az),则沿着B的初始局部坐标系的aEuler方向向下看B在绕着aEuler顺时针旋转。B的旋转状况还受到其初始状态的影响。

2.1 实例演示

using UnityEngine;
using System.Collections;

public class Multiply1_ts : MonoBehaviour {

    public Transform A, B;

    // Use this for initialization
    void Start () {

        A.eulerAngles = new Vector3(1.0f, 1.5f, 2.0f);
    }

    // Update is called once per frame
    void Update () {

        B.rotation *= A.rotation;
        Debug.Log(B.eulerAngles);
    }
}

运行截图

2.2 分析

B绕着其自身坐标系的Vector3(1.0f,1.5f,2.0f)方向旋转。虽然每次都绕着这个轴向旋转的角度相同,但角度的旋转在3个坐标轴的值都不为零,三个轴的旋转会相互影响,所以B的欧拉角的各个分量的每次递增是不固定的。

3、Quaternion对象与Vector3对象

对于Quaternion对象与Vector3对象相乘主要用于自身移动变换,例如

transform.position += tansform.rotation * A;

其中A为Vector3的对象。transform对应的对象会沿着自身坐标系中向量A的方向移动A的模长的距离。transform.rotation与A相乘可以确定移动的方向和距离。

3.1 实例演示

using UnityEngine;
using System.Collections;

public class Multiply2_ts : MonoBehaviour {
    public Transform A;
    float speed = 0.1f;

    // Use this for initialization
    void Start () {

        A.position = Vector3.zero;
        A.eulerAngles = new Vector3(0.0f, 45.0f, 0.0f);
    }

    // Update is called once per frame
    void Update () {

        A.position += A.rotation * (Vector3.forward * speed);
        Debug.Log(A.position);
    }
}

运行截图

4、两个Quaternion对象相乘与Quaternion对象与Vector3对象相乘的异同

  • 设A为两个两个Quaternion对象相乘的结果。B为Quaternion对象与Vector3对象相乘的结果。其中A为Quaternion类型,B为Vector3类型。
  • A与B的相同之处是它们都通过自身坐标系的“相乘”方式来实现在世界坐标系中的变换。
  • A主要用来实现transform绕自身坐标系的某个轴旋转,B主要用来实现transform沿着自身坐标系的某个方向移动。
  • 必须遵守Quaternion对象*Vector3对象的形式,不可以颠倒顺序。
  • 由于它们都是相对于自身坐标系进行的旋转或移动,所以当自身坐标系的轴向和世界坐标系的轴向不一致时,它们绕着自身坐标系中的某个轴向的变动都会影响到物体在世界坐标系中各个坐标轴的变动。

--------------------------------------------------------------------------------------------------------至此完结!-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

时间: 2024-08-04 08:29:08

Unity3D - 详解Quaternion类(二)的相关文章

Unity3D - 详解Quaternion类(一)

一.简介 Quaternion又称四元数,由x,y,z和w这四个分量组成,是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念.四元数的乘法不符合交换律.从明确地角度而言,四元数是复数的不可交换延伸.如把四元数的集合考虑成多维实数空间的话,四元数就代表着一个四维空间,相对于复数为二维空间. 四元数 关于四元数的性质.与旋转的关系.球型线性插值的介绍,请阅读3D游戏与计算机图形学中的数学方法-四元数,在此不多做介绍.下面主要介绍的是Unity中的四元数-Quaternion. 在Unity

Unity3D游戏开发之详解 Animation类和Animator类

Unity3D游戏开发之详解 Animation类和Animator类 Animation类 animation组件用于播放动画.可以指定动画剪辑到动画组件并从脚本控制动画播放.在Unity的动画系统基于权重并且支持动画融合,叠加动画,动画混合,标签和完全控制动画播放的各个方面. 如果想播放一个简单的动画,可以使用Animation.Play:如果想在动画之间交叉淡入,可以使用Animation.CrossFade:如果想改变动画模式(循环,一次,乒乓),可以改变动画导入设置里面的动画帧的Wra

iOS学习之UINavigationController详解与使用(二)页面切换和segmentedController

1.RootView 跳到SecondView 首先我们需要新一个View.新建SecondView,按住Command键然后按N,弹出新建页面,我们新建SecondView 2.为Button 添加点击事件,实现跳转 在RootViewController.xib中和RootViewController.h文件建立连接 在RootViewController.m中实现代码,alloc一个SecondViewController,用pushViewController到navigationCon

PHP面向对象编程详解:类和对象

PHP面向对象编程详解:类和对象 从OOP的视角看,不应区分语言.无论是C++.无论是Java.无论是.net还有更多面向对象的语言,只要你了解了OO的真谛,便可以跨越语言,让你的思想轻松的跳跃.便没有对于Java..net.PHP 之间谁强谁弱的争执了. 希望这个介绍PHP5面向对象编程(OOP)的资料能让初学者受益,能让更多的PHPer开始转向OO的编程过程. 相对PHP4,PHP5在面向对象方面改变了很多.我们将只介绍PHP5环境下的面向对象.而我们必须改变自己来跟随PHP5的发展.如果代

shared pool 和buffer pool 详解(之二, Cache Buffers LRU Chain、Cache Buffers LRU Chain闩锁竞争与解决)

[深入解析--eygle]学习笔记 1.1.2  Cache BuffersLRU Chain闩锁竞争与解决 当用户进程需要读数据到Buffer Cache时或Cache Buffer根据LRU算法进行管理等,就不可避免的要扫描LRU  List获取可用Buffer或更改Buffer状态,我们知道,Oracle的Buffer Cache是共享内存,可以为众多并发进程并发访问,所以在搜索的过程中必须获取Latch(Latch是Oracle的一种串行锁机制,用于保护共享内存结构),锁定内存结构,防止

[转]iOS学习之UINavigationController详解与使用(二)页面切换和segmentedController

转载地址:http://blog.csdn.net/totogo2010/article/details/7682433 iOS学习之UINavigationController详解与使用(一)添加UIBarButtonItem是上篇,我们接着讲UINavigationController的重要作用,页面的管理和切换. 1.RootView 跳到SecondView 首先我们需要新一个View.新建SecondView,按住Command键然后按N,弹出新建页面,我们新建SecondView 2

oracle HA 高可用性详解(之二,深入解析TAF,以及HA框架)

oracle HA 高可用性详解(之一,client.server端服务详解):http://write.blog.csdn.net/postedit 我们已经看到TAF是的Oracle的会话能够自动重新连接,需要说明的是,这个能力是基于OCI的,是OCI的一个功能,JDBC Thin Driver无效,因为这种驱动不是构建在OCI库上的. 虽然这个功能发起于RAC,但TAF并不局限于RAC,单实例.DG环境都可以享受这个好处.Oralce声称其TAF能够保证用户会话自动的转移到另一个实例上.这

【python进阶】详解元类及其应用2

前言 在上一篇文章[python进阶]详解元类及其应用1中,我们提到了关于元类的一些前置知识,介绍了类对象,动态创建类,使用type创建类,这一节我们将继续接着上文来讲~~~ 5.使?type创建带有?法的类 最终你会希望为你的类增加?法.只需要定义?个有着恰当签名的函数并将 其作为属性赋值就可以了.添加实例?法 In [14]: def echo_bar(self):#定义了一个普通的函数 ...: print(self.bar) ...: In [15]: FooChild = type('

MySQL存储过程详解 mysql 存储过程(二)

mysql存储过程详解1.      存储过程简介我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的SQL语句集,经编译后存储在数据库中,用户通过指定存储过程的名字并给定参数(如果该存储过程带有参数)来调用执行它.一个存储过程是一个可编程的函数,它在数据库中创建并保存.它可以有SQL语句和一些特殊的控制结构组成.当希望在不同的应用程序或平台上执行相同的函数,或者封装特定功能时,存储过程是非常有用的.数据库中